College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 10 of 19
  • Thumbnail Image
    Item
    Optimal surface estimation and thresholding of confocal microscope images of biofilms using Beer's Law
    (2020-05) Parker, Albert E.; Christen, J. A.; Lorenz, Lindsey A.; Smith, Heidi J.
    Beer's Law explains how light attenuates into thick specimens, including thick biofilms. We use a Bayesian optimality criterion, the maximum of the posterior probability distribution, and computationally efficiently fit Beer's Law to the 3D intensity data collected from thick living biofilms by a confocal scanning laser microscope. Using this approach the top surface of the biofilm and an optimal image threshold can be estimated. Biofilm characteristics, such as bio-volumes, can be calculated from this surface. Results from the Bayesian approach are compared to other approaches including the method of maximum likelihood or simply counting bright pixels. Uncertainty quantification (i.e., error bars) can be provided for the parameters of interest. This approach is applied to confocal images of stained biofilms of a common lab strain of Pseudomonas aeruginosa, stained biofilms of Janthinobacterium isolated from the Antarctic, and biofilms of Staphylococcus aureus that have been genetically modified to fluoresce green.
  • Thumbnail Image
    Item
    Symmetry breaking clusters in soft clustering decoding of neural codes
    (2010-02) Parker, Albert E.; Dimitrov, Alexander G.; Gedeon, Tomas
    Information-based distortion methods have been used successfully in the analysis of neural coding problems. These approaches allow the discovery of neural symbols and the corresponding stimulus space of a neuron or neural ensemble quantitatively, while making few assumptions about the nature of either the code or of relevant stimulus features. The neural codebook is derived by quantizing sensory stimuli and neural responses into a small set of clusters, and optimizing the quantization to minimize an information distortion function. The method of annealing has been used to solve the corresponding high-dimensional nonlinear optimization problem. The annealing solutions undergo a series of bifurcations, which we study using bifurcation theory in the presence of symmetries. In this contribution we describe these symmetry breaking bifurcations in detail, and indicate some of the consequences of the form of the bifurcations. In particular, we show that the annealing solutions break symmetry at pitchfork bifurcations, and that subcritical branches can exist. Thus, at a subcritical bifurcation, there are local information distortion solutions which are not found by the method of annealing. Since the annealing procedure is guaranteed to converge to a local solution eventually, the subcritical branch must turn and become optimal at some later saddle-node bifurcation, which we have shown occur generically for this class of problems. This implies that the rate distortion curve, while convex for noninformation-based distortion measures, is not convex for information-based distortion methods.
  • Thumbnail Image
    Item
    An in vitro model for the growth and analysis of chronic wound MRSA biofilms
    (2011-09) Agostinho, Alessandra; Hartman, A.; Lipp, C.; Parker, Albert E.; Stewart, Philip S.; James, Garth A.
    Aims: To develop an in vitro model (Colony/drip-flow reactor – C/DFR) for the growth and analysis of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Methods and Results: Using the C/DFR model, biofilms were grown on the top of polycarbonate filter membranes inoculated with a clinical isolate of MRSA, placed on absorbent pads in the DFR and harvested after 72 h. The biofilms varied from 256 to 308 µm in thickness with a repeatability standard deviation of 0·22. Testing of antimicrobial agents was also performed where C/DFR biofilms were grown in parallel with conventional colony biofilms. A saline solution (control), 1% silver sulfadiazine solution, and 0·25% Dakin’s solution were used to treat the biofilms for 15 min. Microscopic evaluation of biofilm morphology and thickness was conducted. The Dakins solution in both models produced statistically significantly higher log reductions than silver sulfadiazine treatment. Conclusions: The C/DFR biofilms were thick and repeatable and exhibited higher resistance to Dakins solution than the treated colony biofilms. Significance and Impact of the Study: The C/DFR can be used as a tool for examining complex biofilm physiology as well as for performing comparative experiments that test wound care products and novel antimicrobials.
  • Thumbnail Image
    Item
    Comparing the chlorine disinfection of detached biofilm clusters with those of sessile biofilms and planktonic cells in single-and dual-species cultures
    (2011-10) Behnke, S.; Parker, Albert E.; Woodall, Dawn; Camper, Anne K.
    Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.
  • Thumbnail Image
    Item
    Antimicrobial penetration and efficacy in an in vitro oral biofilm model
    (2011-05) Corbin, A.; Pitts, Betsey; Parker, Albert E.; Stewart, Philip S.
    The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials.
  • Thumbnail Image
    Item
    A modified CDC biofilm reactor to produce mature biofilms on the surface of PEEK membranes for an in vivo animal model application
    (2011-03) Williams, Dustin L.; Woodbury, Kassie L.; Haymond, B. S.; Parker, Albert E.; Bloebaum, R. D.
    Biofilm-related infections have become a major clinical concern. Typically, animal models that involve inoculation with planktonic bacteria have been used to create positive infection signals and examine antimicrobial strategies for eradicating or preventing biofilm-related infection. However, it is estimated that 99.9%of bacteria in nature dwell in established biofilms. As such, openwounds have significant potential to become contaminatedwith bacteria that reside in a well-established biofilm. In this study, a modified CDC biofilm reactor was developed to repeatably grow mature biofilms of Staphylococcus aureus on the surface of polyetheretherketone (PEEK) membranes for inoculation in a future animal model of orthopaedic implant biofilm-related infection. Results indicated that uniform, mature biofilms repeatably grew on the surface of the PEEK membranes.
  • Thumbnail Image
    Item
    Performance of the AOAC use-dilution method with targeted modifications: Collaborative study
    (2012-11) Tomasino, S. F.; Parker, Albert E.; Hamilton, Martin A.; Hamilton, G. C.
    The U.S. Environmental Protection Agency (EPA), in collaboration with an industry work group, spearheaded a collaborative study designed to further enhance the AOAC use-dilution method (UDM). Based on feedback from laboratories that routinely conduct the UDM, improvements to the test culture preparation steps were prioritized. A set of modifications, largely based on culturing the test microbes on agar as specified in the AOAC hard surface carrier test method, were evaluated in a five-laboratory trial. The modifications targeted the preparation of the Pseudomonas aeruginosa test culture due to the difficulty in separating the pellicle from the broth in the current UDM. The proposed modifications (i.e., the modified UDM) were compared to the current UDM methodology for P. aeruginosa and Staphylococcus aureus. Salmonella choleraesuis was not included in the study. The goal was to determine if the modifications reduced method variability. Three efficacy response variables were statistically analyzed: the number of positive carriers, the log reduction, and the pass/fail outcome. The scope of the collaborative study was limited to testing one liquid disinfectant (an EPA-registered quaternary ammonium product) at two levels of presumed product efficacies, high and low. Test conditions included use of 400 ppm hard water as the product diluent and a 5% organic soil load (horse serum) added to the inoculum. Unfortunately, the study failed to support the adoption of the major modification (use of an agar-based approach to grow the test cultures) based on an analysis of method's variability. The repeatability and reproducibility standard deviations for the modified method were equal to or greater than those for the current method across the various test variables. However, the authors propose retaining the frozen stock preparation step of the modified method, and based on the statistical equivalency of the control log densities, support its adoption as a procedural change to the current UDM. The current UDM displayed acceptable responsiveness to changes in product efficacy; acceptable repeatability across multiple tests in each laboratory for the control counts and log reductions; and acceptable reproducibility across multiple laboratories for the control log density values and log reductions. Although the data do not support the adoption of all modifications, the UDM collaborative study data are valuable for assessing sources of method variability and a reassessment of the performance standard for the UDM.
  • Thumbnail Image
    Item
    Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms
    (2013-01) Faulwetter, J. L.; Burr, Mark D.; Parker, Albert E.; Stein, Otto R.; Camper, Anne K.
    Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p<0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox.
  • Thumbnail Image
    Item
    Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid
    (2013-02) Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.
    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24-hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.
  • Thumbnail Image
    Item
    Procedural revision to the AOAC germicidal spray products as disinfectants test method: Establishment of minimum and maximum log density values for test microbes on inoculated carriers
    (2013-06) Pines, R. M.; Tomasino, S. F.; Cottrill, M. P.; Hamilton, G. C.; Parker, Albert E.
    The AOAC Germicidal Spray Products as Disinfectants test method (AOAC Official Method 961.02) is used to measure the efficacy of spray products on hard inanimate surfaces; however, the method does not provide procedures to determine the population of the test microbe on inoculated glass slide carriers (e.g., carrier counts reported as CFU/carrier). Without a method to measure and monitor carrier counts, the associated efficacy data may not be reliable and repeatable. This report provides a standardized procedure to address this issue and, based on carrier count data collected by four laboratories from 2000 to 2010, proposes a specific range for the mean log density per carrier as a requirement. Laboratory-based carrier count data were collected concurrently with 116 Method 961.02 efficacy tests conducted on spray products bearing claims against Pseudomonas aeruginosa and Staphylococcus aureus. For many of the tests a soil load (SL) was added to the inoculum (as specified on the product label claim). Six carriers were assayed per test for a total of 696 carriers. All but two of the 116 mean log densities were at least 5.0 (a geometric mean of 1.0 × 105 CFU/carrier). Across the four combinations of microbes and SL treatments, the mean TestLD (mean log density across all enumerated carriers in a test) ranged from approximately 6.0 (a geometric mean of 0.9 × 106 CFU/carrier) to 6.3 (a geometric mean of 2.0 × 106 CFU/carrier). Across all microbes and SL treatments, the mean log density (±SEM) was 6.2 (±0.07) per carrier (a geometric mean of 1.5 × 106 CFU/carrier). The mean log density for six carriers per test showed good repeatability (0.32) and reproducibility (0.34). The proposed requirement for S. aureus tests and P. aeruginosa tests is a mean log density (across six carriers) between 5.0 and 6.5. A separate 2009 study at three laboratories was conducted to evaluate the persistence of P. aeruginosa, S. aureus, and Salmonella enterica on glass carriers. Based on the persistence data, a 2 h use period is proposed for using the inoculated carriers post drying. The persistence data set was also used to assess the carrier counts for S. enterica. The carrier counts were approximately one log lower for S. enterica compared to S. aureus and P. aeruginosa; a range of 4.0 to 5.5 logs is proposed as a requirement for S. enterica tests.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.