College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
14 results
Search Results
Item Magnetic resonance analysis of capillary formation reaction front dynamics in alginate gels(2011-09) Maneval, James E.; Bernin, D.; Fabich, H. T.; Seymour, Joseph D.; Codd, Sarah L.The formation of heterogeneous structures in biopolymer gels is of current interest for biomedical applications and is of fundamental interest to understanding the molecular level origins of structures generated from disordered solutions by reactions. The cation-mediated physical gelation of alginate by calcium and copper is analyzed using magnetic resonance measurements of spatially resolved molecular dynamics during gel front propagation. Relaxation time and pulse-field gradient methods are applied to determine the impact of ion front motion on molecular translational dynamics. The formation of capillaries in alginate copper gels is correlated to changes in translational dynamics.Item NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions(2011-03) Fridjonsson, E. O.; Seymour, Joseph D.; Schultz, Logan N.; Gerlach, Robin; Cunningham, Alfred B.; Codd, Sarah L.Noninvasive measurements of hydrodynamic dispersion by nuclear magnetic resonance (NMR) are made in a model porous system before and after a biologically mediated precipitation reaction. Traditional magnetic resonance imaging (MRI) was unable to detect the small scale changes in pore structure visualized during light microscopy analysis after destructive sampling of the porous medium. However, pulse gradient spin echo nuclear magnetic resonance (PGSE NMR) measurements clearly indicated a change in hydrodynamics including increased pore scale mixing. These changes were detected through time-dependent measurement of the propagator by PGSE NMR. The dynamics indicate an increased pore scale mixing which alters the preasymptotic approach to asymptotic Gaussian dynamics governed by the advection diffusion equation. The methods described here can be used in the future to directly measure the transport of solutes in biomineral-affected porous media and contribute towards reactive transport models, which take into account the influence of pore scale changes in hydrodynamics.Item Microbial and algal alginate gelation characterized by magnetic resonance(2012-10) Fabich, H. T.; Vogt, Sarah J.; Sherick, Matthew L.; Seymour, Joseph D.; Brown, Jennifer R.; Franklin, Michael J.; Codd, Sarah L.Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca2+ ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin–spin T2 magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.Item Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations(2013-05) Vogt, Sarah J.; Sanderlin, A. B.; Seymour, Joseph D.; Codd, Sarah L.Biofilm growth in porous media is difficult to study non-invasively due to the opaqueness and heterogeneity of the systems. Magnetic resonance is utilized to non-invasively study water dynamics within porous media. Displacement-relaxation correlation experiments were performed on fluid flow during biofilm growth in a model porous media of mono-dispersed polystyrene beads. The spin–spin T2 magnetic relaxation distinguishes between the biofilm phase and bulk fluid phase due to water–biopolymer interactions present in the biofilm, and the flow dynamics are measured using PGSE NMR experiments. By correlating these two measurements, the effects of biofilm growth on the fluid dynamics can be separated into a detailed analysis of both the biofilm phase and the fluid phase simultaneously within the same experiment. Within the displacement resolution of these experiments, no convective flow was measured through the biomass. An increased amount of longitudinal hydrodynamic dispersion indicates increased hydrodynamic mixing due to fluid channeling caused by biofilm growth. The effect of different biofilm growth conditions was measured by varying the strength of the bacterial growth medium.Item Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations(2013-04) Yang, Xinmin; Scheibe, T. D.; Richmond, M. C.; Perkins, W. A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; McKinley, M. I.A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier–Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. © 2012 Elsevier Science. All rights reserved.Item NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water(2016-02) Prather, Cody A.; Bray, J. M.; Seymour, Joseph D.; Codd, Sarah L.Nuclear magnetic resonance (NMR) techniques were used to study the capillary trapping mechanisms relevant to carbon sequestration. Capillary trapping is an important mechanism in the initial trapping of supercritical CO2 in the pore structures of deep underground rock formations during the sequestration process. Capillary trapping is considered the most promising trapping option for carbon sequestration. NMR techniques noninvasively monitor the drainage and imbibition of air, CO2, and supercritical CO2 with DI H2O at low capillary numbers in a Berea sandstone rock core under conditions representative of a deep underground saline aquifer. Supercritical CO2 was found to have a lower residual nonwetting (NW) phase saturation than that of air and CO2. Supercritical CO2 behaves differently than gas phase air or CO2 and leads to a reduction in capillary trapping. NMR relaxometry data suggest that the NW phase, i.e., air, CO2, or supercritical CO2, is preferentially trapped in larger pores. This is consistent with snap-off conditions being more favorable in macroscale pores, as NW fluids minimize their contact area with the solid and hence prefer larger pores.Item Colloid particle transport in a microcapillary: NMR study of particle and suspending fluid dynamics(2016-10) Fridjonsson, E. O.; Seymour, Joseph D.Precise manipulation of the hydrodynamic interaction between particles is particularly important for operation of microfluidic devices. Shear-induced migration gives rise to dynamical patterns within the flow that have been observed in a range of systems. In this work NMR ‘active’ colloidal particles (a=1.25 µm) at volume fraction of 22% in an aqueous phase are flowed through a µ-capillary (R=126 µm) and the transport dynamics of the particle and suspending fluid phases are studied using dynamic NMR techniques. Simultaneous interrogation of shear rheology of the suspending fluid and particle phases of colloidal suspensions is presented. The dynamic behavior of the suspending fluid is shown to carry within it information about the structure of the colloidal particle ensembles on the time scales investigated (Δ=25 ms→250 ms) providing rich experimental data for further investigation and model verification. The importance of determining the particle concentration profile within μ-capillaries is explicitly demonstrated as shear induced migration causes significant concentration gradients to occur at strong flow conditions (i.e. Pep=270).Item Anomalous preasymptotic colloid transport by hydrodynamic dispersion in microfluidic capillary flow(2014-07) Fridjonsson, E. O.; Seymour, Joseph D.; Codd, Sarah L.The anomalous preasymptotic transport of colloids in a microfluidic capillary flow due to hydrodynamic dispersion is measured by noninvasive nuclear magnetic resonance (NMR). The data indicate a reduced scaling of mean squared displacement with time from the 〈z(t)^{2}〉_{c}∼t^{3} behavior for the interaction of a normal diffusion process with a simple shear flow. This nonequilibrium steady-state system is shown to be modeled by a continuous time random walk (CTRW) on a moving fluid. The full propagator of the motion is measured by NMR, providing verification of the assumption of Gaussian jump length distributions in the CTRW model. The connection of the data to microrheology measurements by NMR, in which every particle in a suspension contributes information, is established.Item Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance(2014-09) Brown, Jennifer R.; Seymour, Joseph D.; Brox, T. I.; Skidmore, Mark L.; Wang, Chen; Christner, Brent C.; Luo, B. H.; Codd, Sarah L.Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.Item Magnetic resonance measurements of flow-path enhancement during supercritical CO2 injection in sandstone and carbonate rock cores(2014-10) Vogt, Sarah J.; Shaw, Colin A.; Maneval, James E.; Brox, Timothy I.; Skidmore, Mark L.; Codd, Sarah L.; Seymour, Joseph D.Sandstone and carbonate core samples were challenged with a two-phase supercritical CO2 and brine mixture to investigate the effects of chemical processes on the physical properties of these rocks during injection of CO2. The experiments were monitored in real-time for pressure, temperature, and volumetric rate discharge. Pore geometry and connectivity were characterized before and after each experimental challenge using magnetic resonance (MR) imaging and two-dimensional MR relaxation correlations. Quartz arenite sandstone cores were largely unaffected by the challenge with no measurable change in effective permeability at moderate and high temperatures (~50 °C and ~95 °C) or brine concentrations (~1 g/L and ~10 g/L). In contrast, a carbonate core sample showed evidence of significant dissolution leading to a six-fold increase in effective permeability. MR images and relaxation measurements revealed a marked increase in the volume and connectivity of pre-existing pore networks in the carbonate core. We infer that the increase in permeability in the carbonate core was enhanced by focused dissolution in the existing pore and fracture networks that enhanced fast-flow paths through the core.