College of Letters & Science

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/37

The College of Letters and Science, the largest center for learning, teaching and research at Montana State University, offers students an excellent liberal arts and sciences education in nearly 50 majors, 25 minors and over 25 graduate degrees within the four areas of the humanities, natural sciences, mathematics and social sciences.

Browse

Search Results

Now showing 1 - 10 of 1857
  • Thumbnail Image
    Item
    Preventing heat-related deaths: The urgent need for a global early warning system for heat
    (Public Library of Science, 2024-07) Brimicombe, Chloe; Runkle, Jennifer D.; Tuholske, Cascade; Domeisen, Daniela I. V.; Gao, Chuansi; Toftum, Jørn; Otto, Ilona M.
    Heatwaves are the deadliest weather hazard and people and societies across the world continue to suffer from heat-related impacts. Future climate projections show a troubling increase in cross-sectoral impacts including health and economic risk presented by heatwaves. Many weather hazards such as floods and droughts already have a type of Early Warning System (EWS) or Global Alert System, but a global heat early warning system currently does not exist. An accurate heat EWS can save lives and can promote heat adaptation across society. Here, we (1) explore the history of Early Warning Systems as framed using the Disaster Risk Reduction paradigms and (2) identify potential barriers to an integrated Global Heat Early Warning system. Finally, we discuss what we have learned from history and the identified current barriers and outline a vision of a Global Heat Early Warning system around four key themes, incorporating systems for low-, middle-, and high-income countries and requiring cross-sectoral, cross-government, and interdisciplinary collaboration.
  • Thumbnail Image
    Item
    Dynamics of a plant–pollinator network: extending the Bianconi–Barabási model
    (Springer Science and Business Media LLC, 2024-06) Castillo, William J.; Burkle, Laura A.; Dormann, Carsten F.
    We study the dynamical assembly of weighted bipartite networks to understand the hidden mechanisms of pollination, expanding the Bianconi–Barabási model where nodes have intrinsic properties. Allowing for a non-linear interaction rate, which represents the seasonality of flowers and pollinators, our analysis reveals similarity of this extended Bianconi–Barabási model with field observations. While our current approach may not fully account for the diverse range of interaction accretion slopes observed in the real world, we regard it as an important step towards enriching theoretical models with biological realism.
  • Thumbnail Image
    Item
    Morphology, timing, and drivers of post-glacial landslides in the northern Yellowstone region
    (Wiley, 2024) Dixon, Jean L.; Nicholas, Grace E.; Pierce, Kenneth L.; Lageson, David
    The withdrawal of glaciers in mountainous systems exposes over-steepened slopes previously sculpted by ice. This debuttressing can directly trigger mass movements or leave slopes susceptible to them by other drivers, including seismogenic shaking and changing climate conditions. These systems may pose hazards long after deglaciation. Here, we investigate the drivers of slope failure for landslides at the northern entrance to Yellowstone National Park, a critical conduit traversed by ~1 million visitors each year. Through field mapping and analyses of LiDAR data, we quantify the spatial and temporal relationships between eight adjacent slides. Stratigraphic relationships and surface roughness analyses suggest initial emplacement 13–11.5 ka, after a significant delay from Deckard Flats glacial retreat (15.1 ± 1.2 ka). Thus, rapid glacial debuttressing was not the direct trigger of slope failure, though the resultant change in stress regime likely had a preparatory influence. We posit that the timing of failure was associated with (1) a period of enhanced moisture and seismicity in the late Pleistocene and (2) altered stress regimes associated with ice retreat. Historical archives and cross-cutting relationships indicate portions of some ancient slides were reactivated; these areas are morphologically distinguishable from other slide surfaces, with mean topographic roughness 2 times that of non-active slides. Stream power analysis and archival records indicate Holocene incision of the Gardner River and human disturbances are largely responsible for modern reactivations. Our findings highlight the importance of combining archival records with stratigraphic, field and remote sensing approaches to understanding landslide timing, risk, and drivers in post-glacial environments. This study also provides a valuable baseline for geomorphic change in the Yellowstone system, where a 2022 flood incised streams, damaged infrastructure and further reactivated landslide slopes.
  • Thumbnail Image
    Item
    Dynamical tides during the inspiral of rapidly spinning neutron stars: Solutions beyond mode resonance
    (American Physical Society, 2024-07) Yu, Hang; Arras, Phil; Weinberg, Nevin N.
    We investigate the dynamical tide in a gravitational wave (GW)-driven coalescing binary involving at least one neutron star (NS). The deformed NS is assumed to spin rapidly, with its spin axis antialigned with the orbit. Such an NS may exist if the binary forms dynamically in a dense environment, and it can lead to a particularly strong tide because the NS f-mode can be resonantly excited during the inspiral. We present a new analytical solution for the f-mode resonance by decomposing the tide into a resummed equilibrium component varying at the tidal forcing frequency and a dynamical component varying at the f-mode eigenfrequency that is excited only around mode resonance. This solution simplifies numerical implementations by avoiding the subtraction of two diverging terms as was done in previous analyses. It also extends the solution’s validity to frequencies beyond mode resonance. When the dynamical tide back reacts on the orbit, we demonstrate that the commonly adopted effective Love number is insufficient because it does not capture the tidal torque on the orbit that dominates the back reaction during mode resonance. An additional dressing factor originating from the imaginary part of the Love number is therefore introduced to model the torque. The dissipative interaction between the NS and the orbital mass multipoles is computed including the dynamical tide and shown to be subdominant compared to the conservative energy transfer from the orbit to the NS modes. Our study shows that orbital phase shifts caused by the 𝑙=3 and 𝑙=2 f-modes can reach 0.5 and 10 radians at their respective resonances if the NS has a spin rate of 850 Hz and direction antialigned with the orbit. Because of the large impact of the 𝑙=2 dynamical tide, a linearized analytical description becomes insufficient, calling for future developments to incorporate higher-order corrections. After mode excitation, the orbit cannot remain quasicircular, and the eccentricity excited by the 𝑙=2 dynamical tide can approach nearly 𝑒≃0.1, leading to nonmonotonic frequency evolution which breaks the stationary phase approximation commonly adopted by frequency domain phenomenological waveform constructions. Lastly, we demonstrate that the GW radiation from the resonantly excited f-mode alone can be detected with a signal-to-noise ratio exceeding unity at a distance of 50 Mpc with the next-generation GW detectors.
  • Thumbnail Image
    Item
    Divergent Electrically Conductive Pathways in Yttrium-Based 2- and 3-Dimensional Metal–Organic Frameworks
    (American Chemical Society, 2024-07) Welty, Connor; Gormley, Eoghan L.; Oppenheim, Julius J.; Dincă, Mircea; Hendon, Christopher H.; Stadie, Nicholas P.
    Despite most porous framework solids exhibiting insulating character, some are known to conduct electrical charge. The peak performing conductive metal–organic frameworks are composed of redox-active hexasubstituted triphenylene linkers, but the impact of redox activity on material conductivity remains enigmatic because of limited availability of direct structure–function relationships. Here, we report a hexagonal yttrium-based conductive porous scaffold, comprising hexahydroxytriphenylene connected by Y-chains (YHOTP). In comparison to its known porous cubic counterpart (Y6HOTP2), this material features a 1000-fold increase in peak conductivity in polycrystalline samples (∼10–1 S cm–1). Furthermore, through a comparison of their electronic structures, we rationalize the origin of this difference and highlight the role of charge carrier concentration in dictating bulk electrical conductivity. Together, this work provides a design principle for the development of next-generation conductive porous frameworks.
  • Thumbnail Image
    Item
    Reconciling petrologic magma ascent speedometers for the June 12th, 1991 eruption of Mt. Pinatubo, Philippines
    (Volcanica, 2024-03) Harris, Megan; Hosseini, Behnaz; Myers, Madison; Bouley, Logan
    We investigate whether decompression rates derived from three often-disparate petrologic techniques (microlites, bubbles, and melt embayments) can be reconciled or integrated for a more complete understanding of magma ascent in the conduit. We focus on the well-studied and -documented earliest Plinian eruptions (June 12, 1991) of Mount Pinatubo. Using a newly developed two-stage decompression-diffusion model, volatile profiles in quartz-hosted embayments reveal an initial stage of decompression nearly two orders of magnitude slower than final rates. In applying time-integrated models of microlite and bubble nucleation and growth, initial decompression rates from embayments are supported by microlite modeling results, whereas final rates are in close agreement with bubble number densities. This consistency and continuity between speedometers supports the sensitivity of different petrologic recorders to specific regions of the conduit system and highlights the fidelity of embayments as recorders of decompression throughout the entire conduit. Ascent timescales derived from Pinatubo embayments range from hours to days, coinciding with the visual onset of lava effusion leading to explosive activity.
  • Thumbnail Image
    Item
    Wood–Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah
    (Oxford University Press, 2024-07) Shoemaker, Anna; Maritan, Andrew; Cosar, Su; Nupp, Sylvia; Menchaca, Ana; Jackson, Thomas; Dang, Aria; Baxter, Bonnie K.; Colman, Daniel R.; Dunham, Eric C.; Boyd, Eric S.
    Little is known of primary production in dark hypersaline ecosystems despite the prevalence of such environments on Earth today and throughout its geologic history. Here, we generated and analyzed metagenome-assembled genomes (MAGs) organized as operational taxonomic units (OTUs) from three depth intervals along a 30-cm sediment core from the north arm of Great Salt Lake, Utah. The sediments and associated porewaters were saturated with NaCl, exhibited redox gradients with depth, and harbored nitrogen-depleted organic carbon. Metabolic predictions of MAGs representing 36 total OTUs recovered from the core indicated that communities transitioned from aerobic and heterotrophic at the surface to anaerobic and autotrophic at depth. Dark CO2 fixation was detected in sediments and the primary mode of autotrophy was predicted to be via the Wood–Ljungdahl pathway. This included novel hydrogenotrophic acetogens affiliated with the bacterial class Candidatus Bipolaricaulia. Minor populations were dependent on the Calvin cycle and the reverse tricarboxylic acid cycle, including in a novel Thermoplasmatota MAG. These results are interpreted to reflect the favorability of and selectability for populations that operate the lowest energy requiring CO2-fixation pathway known, the Wood–Ljungdahl pathway, in anoxic and hypersaline conditions that together impart a higher energy demand on cells.
  • Thumbnail Image
    Item
    Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model
    (MDPI AG, 2024-07) Costello, Stephanaan M.; Schultz, Anastasia; Smith, Donald; Horan, Danielle; Chaverra, Martha; Tripet, Brian; George, Lynn; Bothner, Brian; Lefcort, Frances; Copié, Valérie
    Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber’s hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients’ serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson’s, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (1H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific Elp1 conditional knockout (CKO) FD mouse model (Pax6-Cre; Elp1LoxP/LoxP). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30–P90, and dopamine levels were 25–35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD.
  • Thumbnail Image
    Item
    Corrosion Resistance of Atomically Thin Graphene Coatings on Single Crystal Copper
    (MDPI AG, 2024-05) Mahmudul Hasan, Md; Devadig, Ramesh; Sigdel, Pawan; Lipatov, Alexey; Avci, Recep; Jasthi, Bharat K.; Gadhamshetty, Venkataramana
    Designing minimally invasive, defect-free coatings based on conformal graphene layers to shield metals from both abiotic and biotic forms of corrosion is a persistent challenge. Single-layer graphene (SLG) grown on polycrystalline copper (PC-Cu) surfaces often have inherent defects, particularly at Cu grain boundaries, which weaken their barrier properties and worsen corrosion through grain-dependent mechanisms. Here, we report that an SLG grown via chemical vapor deposition (CVD) on Cu (111) single crystal serves as a high-performance coating to lower corrosion by nearly 4–6 times (lower than bare Cu (111)) in abiotic (sulfuric acid) and microbiologically influenced corrosion (MIC) environments. For example, the charge transfer resistance for SLG/Cu (111) (3.95 kΩ cm2) was 2.5-fold higher than for bare Cu (111) (1.71 kΩ cm2). Tafel analysis corroborated a reduced corrosion current (42 ± 3 µA cm−2) for SLG/Cu (111) compared to bare Cu (111) (115 ± 7 µA cm−2). These findings are consistent with the results based on biofilm measurements. The SLG/Cu (111) reduced biofilm formation by 3-fold compared to bare Cu (111), increasing corrosion resistance, and effectively mitigating pitting corrosion. The average depths of the pits (3.4 ± 0.6 µm) for SLG/Cu (111) were notably shallower than those of bare Cu (111) (6.5 ± 1.2 µm). Surface analysis of the corrosion products corroborated these findings, with copper sulfide identified as a major component across both surfaces. The absence of grain boundaries in Cu (111) resulted in high-quality SLG manifesting higher barrier properties compared to SLG on PC-Cu. Our findings show promise for using the presented strategy for developing durable graphene coatings against diverse forms of corrosion.
  • Thumbnail Image
    Item
    Tracing field lines that are reconnecting, or expanding, or both
    (Frontiers Media SA, 2024-07) Qiu, Jiong
    The explosive release of energy in the solar atmosphere is driven magnetically, but the mechanisms that trigger the onset of the eruption remain controversial. In the case of flares and coronal mass ejections (CMEs), ideal or non-ideal instabilities usually occur in the corona, but it is difficult to obtain direct observations and diagnostics there. To overcome this difficulty, we analyze observational signatures in the upper chromosphere or transition region, particularly brightening and dimming at the base of coronal magnetic structures. In this paper, we examine the time evolution of spatially resolved light curves in two eruptive flares and identify a variety of tempo-spatial sequences of brightening and dimming, such as dimming followed by brightening and dimming preceded by brightening. These brightening–dimming sequences are indicative of the configuration of energy release in the form of plasma heating or bulk motion. We demonstrate the potential of using these analyses to diagnose the properties of magnetic reconnection and plasma expansion in the corona during the early stages of the eruption.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.