Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Snowshoe hare habitat use and silvicultural influences in the Greater Yellowstone Ecosystem
    (Montana State University - Bozeman, College of Agriculture, 2019) Kurzen, Mark Daniel; Chairperson, Graduate Committee: Bok Sowell
    Snowshoe hares (Lepus americanus) are the main prey base of the Canada lynx (Lynx canadensis) and are an important food source for many forest carnivores. Snowshoe hare research in the Greater Yellowstone Ecosystem is lacking and current research conclusions differ in regards to the types and ages of forests that snowshoe hares prefer. The US Forest Service has implemented limitations and prohibitions on silviculture in this area based on previous snowshoe hare studies. However, some research in the Greater Yellowstone Ecosystem suggests that regenerating lodgepole pine (Pinus contorta) stands that are associated with silviculture benefit snowshoe hares. We implemented three snowshoe hare use indices in southwest Montana within a portion of the Custer-Gallatin National Forest during 1999-2012 to assess snowshoe hare use of forest cover types in Greater Yellowstone Ecosystem. Our study area was located in a designated US Forest Service timber management area where a history of silviculture has resulted in a heterogeneous landscape of multiple successional stages intermingled with other old growth stands. We analyzed 11 years of snowshoe hare pellet plot surveys using linear mixed models and AIC c model selection. Our results suggested that the understory conifer species was the best predictor of use and that the youngest two classes of regenerating lodgepole pine stands had the greatest snowshoe hare use. We analyzed 13 years of snowshoe hare track counts on roads within our study area using Chi-squared goodness-of-fit tests based on proportional road segment lengths and the associated cover types. We observed the greatest snowshoe hare habitat use in the youngest two classes of regenerating lodgepole pine stands. We live-trapped snowshoe hares for one winter in our study area and observed the greatest number of hares captured per night in the youngest lodgepole pine stands. The findings from our 13 year study suggest that snowshoe hare use was greatest in early successional lodgepole pine forests that were approximately 30-60 years old and associated with clear cutting and pre-commercial thinning.
  • Thumbnail Image
    Item
    An evaluation of forest grazing in Saskatchewan
    (Montana State University - Bozeman, 1987) Fraser, Douglas Alexander; Chairperson, Graduate Committee: Brian Sindelar
  • Thumbnail Image
    Item
    The effects of fire and grazing in the northern mixed-grass prairie : implications from the Pautre wildfire
    (Montana State University - Bozeman, College of Agriculture, 2016) Gates, Emily Ann; Chairperson, Graduate Committee: Clayton B. Marlow; Lance T. Vermeire, Clayton B. Marlow and Richard C. Waterman were co-authors of the article, 'Reconsidering rest following fire: northern mixed-grass prairie is resilient to spring wildfire and resistant to moderate post-fire grazing' submitted to the journal 'Rangeland ecology and management' which is contained within this thesis.; Lance T. Vermeire, Clayton B. Marlow and Richard C. Waterman were co-authors of the article, 'Season of post-fire defoliation: effects on biomass, community composition and ground cover' submitted to the journal 'Rangeland ecology and management' which is contained within this thesis.; Lance T. Vermeire, Clayton B. Marlow and Richard C. Waterman were co-authors of the article, 'Forage fiber digestibility dynamics in the northern mixed-grass prairie following spring wildfire' submitted to the journal 'Rangeland ecology and management' which is contained within this thesis.
    Current federal recommendations pertaining to the management of post-fire grazing on rangelands interrupts historic disturbance regimes of the North American prairies by indicating that fire and grazing should be separated by at least two growing seasons. In contrast, some scholars suggest that North American prairie evolved under a tight linkage of fire and proximate post-fire grazing and should be well adapted to these combined disturbances. The Pautre wildfire of April 2013 provided an opportunity to test the effects of post-fire grazing in the northern mixed-grass prairie. One grazing allotment, burned in its entirety, and three burned and nonburned sites spanning a north-south gradient of the fire perimeter were selected as study locations. The effects of grazing versus rest, defoliation during the first spring, summer, or fall following the fire on burned and nonburned sites and the effects of fire on forage fiber digestibility were tested. Sites grazed during the first two growing seasons following the fire were found to recover similarly to sites rested during that same time. In addition, defoliation during any season following the fire produced no negative effects when compared to nondefoliation. Increases in forage fiber digestibility peaked shortly after fire and were short-lived, diminishing by the following year. These results lend support to the theory that fire and grazing were historically linked disturbances throughout the evolution of the North American prairies, indicating that the federal recommendation of rest is unnecessary in at least the northern mixed-grass prairie ecoregion. Historic, evolutionary patterns of disturbances, such as fire and grazing, may be useful in determining the most appropriate post-fire management regimes for specific ecoregions.
  • Thumbnail Image
    Item
    Response of understory vegetation to varied lodgepole pine (Pinus contorta) spacing intervals in western Montana
    (Montana State University - Bozeman, College of Agriculture, 1982) Conway, Terry Michael
  • Thumbnail Image
    Item
    The decline of a riparian gallery forest in Devils Tower, Wyoming : causation and management techniques for restoration
    (Montana State University - Bozeman, College of Agriculture, 2013) Anderson, Jacob Michael; Chairperson, Graduate Committee: Clayton B. Marlow
    Devils Tower National Monument, Wyoming, (DT) has experienced a decline in cottonwood recruitment along the Belle Fourche River, leaving the remaining riverine forest in danger of disappearing. The National Park Service has requested information about the mechanisms behind this decline and possible management methods that could be used to restore forests to the Belle Fourche riparian corridor. Previous research has indicated that cottonwood seedlings require flood-deposited sediments and high initial groundwater for survival. A dam located 12 miles upstream of Devils Tower could be impacting the recruitment success of cottonwoods because of a decrease in seasonal flooding. If this decline is due to factors that managers have little control over, other methods should be explored to increase the success of future restoration efforts. This case study examined the physical attributes of the Devils Tower riparian area in comparison to a healthy, functioning, riparian gallery forest located on the nearby Powder River (PR) to learn the complex mechanisms that help support and sustain these healthy riparian ecosystems. Soil field tests, cottonwood surveys, and measurements of local groundwater patterns were used to compare the two sites. To determine the restoration potential of cottonwood gallery forests at Devils Tower, planting trials were conducted to provide a methodology for greater seedling survival, testing effects of residual herbicide, species planted, preliminary soil preparation including disking, herbaceous understory control, and irrigation. We observed higher groundwater and greater cottonwood age class diversity at the Powder River site, in contrast to the DT site. At DT, tree health was significantly higher (p=.0003) with shallower groundwater. Tree mortality was highest among boxelder and bur oak in sites with deepest groundwater levels. At the same time, irrigation at economically feasible levels had no significant effect on tree survival. This research suggests that site potential for cottonwood re-establishment is poor along the Belle Fourche riparian corridor due to deep groundwater tables (1.7-2.2m) and regulated flow patterns with limited sediment delivery to the floodplain environment. A successional shift resulting from regulated streamflow conditions now favors green ash over any other species.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.