Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
37 results
Search Results
Item Addressing Communication Challenges Related to Nursing Unit Design(Montana State University - Bozeman, College of Nursing, 2024-05) Thorson, Hannah L.When nurses transition from a centralized nursing unit to a decentralized nursing unit, significant workflow changes can occur. A literature review identified four significant themes related to the transition to a decentralized unit. These themes are challenges with collaboration and teamwork, decreased nurse work efficiency, improvement to patient outcomes, and the importance of nurses’ role in departmental design. Additionally, literature related to the efficacy of electronic communication systems for bedside nursing staff was reviewed. The aim of this scholarly project is to propose a quality improvement intervention to increase nurse usage of clinical phones in an intermediate care unit (IMCU) to help with communication challenges caused by the transition to a decentralized nursing unit. By improving communication through use of the phones, nurses will be able to deliver care more efficiently and enhance communication with other members of the multidisciplinary care team. This quality improvement project falls within the scope of the Clinical Nurse Leader, and has the potential to improve job satisfaction for nurses, as well as provide a safer care environment for patients.Item Concrete-filled steel tube to concrete pile cap connections: verification of analysis/design methodologies(Montana State University - Bozeman, College of Engineering, 2023) Cota, Cash Daniel; Chairperson, Graduate Committee: Michael BerryThis research project focuses on the structural behavior of concrete-filled steel tube (CFST) to concrete pile cap connections, a critical component in many Montana bridges. A series of four experimental pile cap connection specimens were designed and tested to assess the influence of key parameters such as specimen scale, concrete strength, and the incorporation of U-bars on the overall connection performance. The findings from this research revealed that all specimens, barring the specimen with U-bars, displayed consistent moment-drift responses, damage progression, and failure mechanisms within the concrete cap. The inclusion of U-bars notably increased the connection capacity by about 60%, altering the failure mechanism to a plastic hinge formation in the CFST pile. Additionally, the study validated the efficacy of a novel moment-rotation methodology for predicting the capacity of cap connections, with an average measured-to-predicted ratio of 0.95 and a coefficient of variation of 10%. However, this methodology showed a tendency to overpredict capacities in connections without U-bars and underpredict in those with U-bars. Overall, this research provides valuable insight into the behavior of these critical connections under diverse conditions and demonstrates the efficacy of the moment-rotation methodology.Item Opto-mechanical design and analysis for coherent active imaging(Montana State University - Bozeman, College of Engineering, 2022) Neeley, Jaime Branson; Co-chairs, Graduate Committee: Wm. Randall Babbitt and Joseph A. ShawThe objective of this thesis project was to design a monostatic lidar transmit (Tx) and receive (Rx) opto-mechanical apparatus for remote sensing at a variable range of 50 m - 500 m. The scope of this project begins from the fiber output of a pre-designed Frequency-Modulated Continuous Wave (FMCW) lidar system. After design criteria for the lidar module are given, the optical and mechanical design is presented, opto-mechanical tolerancing is presented, and assembly, alignment, and testing procedures are covered as well. This thesis shows that the required design criteria of diffraction-limited optical performance was achieved while accounting for predictable manufacturing and assembly errors modeled using a Monte Carlo tolerance analysis. Furthermore, this thesis shows that the modeled and measured optical performance results were in good agreement and recommendations are given for improvements for the next-generation revision of the lidar Tx/Rx module.Item Design, fabrication, and validation of a portable perturbation treadmill for balance recovery research(Montana State University - Bozeman, College of Engineering, 2022) Knutson, Robert George; Chairperson, Graduate Committee: Corey PewTrips and falls are a major concern for older adults. The resulting injury and loss of mobility can have a significant impact on quality of life. An emerging field of study, known as Perturbation Training, has been shown to reduce injury rates associated with trips and falls in older adults. In a typical training session, the user stands or walks on a treadmill and is subject to sudden, unexpected accelerations, simulating a trip or slip, in a safe environment. This training aims to improve the user's ability to maintain and recover balance in situations that can often lead to falls. Treadmills traditionally used for Perturbation Training are large instrumented devices that are rigidly bolted to the floor. This presents a problem for older adults with limited mobility or those who live far away from Perturbation Training facilities. A portable treadmill would be able to serve a larger portion of the at-risk population then current methods have allowed. We developed a portable, low-cost perturbation treadmill capable of high-intensity training. The system can perform trip and slip perturbations from a stationary or walking state. It features a tandem belt configuration, a small gap between belts, and individual belt control. The belt speed is digitally controlled, dictated by a custom human-machine-interface and software suite, which allows operators with no programming experience to control the device. When connected to a 240-volt power supply, the maximum belt speed is approximately 3.6 m/s. The treadmill was designed to accommodate a user of up to 118 kg and provide a maximum acceleration of 12 m/s 2 under full load. The treadmill weighs approximately 180 kg and can be moved like a wheelbarrow, with handles in the back and wheels in the front. The design has been validated and was used in multiple locations in a clinical trial.Item Advancing student motivation and course interest through a utility value intervention in an engineering design context(Montana State University - Bozeman, College of Engineering, 2020) Turoski, Staci Anne; Chairperson, Graduate Committee: Bill SchellStudent motivation is essential for academic success. Researchers and educators across broad educational spectrums have identified important factors effecting undergraduate student motivation. Understanding and improving student motivation is critical for educators to keep students engaged and motivated. Student motivation is multifaceted and complex with interest as one of many factors related to motivation and motived behavior. Student interest in course material can be supported by helping them understand the value and relevance of the material to their professional goals. This study uses expectancy-value framework to understand students' perceptions of the value and relevance of course material and how these perceptions influence interest and academic performance. One means for understanding perceived value is to assess the perception of the utility value, or the view of usefulness, of the task to their present or future goals. Educators can encourage value by asking students to write about the relevance of the course material to their life through structured utility value interventions. This study compared the performance, interest, and motivation between students who participated in structured utility value interventions and those in a control group who did not while enrolled in a third-year multidisciplinary engineering design course. Secondary research questions explored the effectiveness for low-performing students and the frequency at which connections were made. Students completed a survey at the beginning of the course and near completion of the course. Data was gathered during the initial semester of the COVID-19 pandemic. Students' interest in the engineering design process and in the course material increased significantly for students writing to the utility value prompts. Perceived utility value was shown to be a significant predictor in student interest. Academic performance outcomes were not effected by participating in the intervention. Low-performing students did not experience benefit from the interventions. This study builds on and extends previous research on the effectiveness of utility value interventions in impacting student interest and motivation within an engineering design context. Practical application of the results provides educators a simple, cost-effective tool for increasing student interest and motivation in engineering.Item The design process in an eighth grade science class(Montana State University - Bozeman, College of Letters & Science, 2019) Joslyn, Pamela Jo; Chairperson, Graduate Committee: Greg FrancisEngineering provides a framework in which students can test their own developing scientific knowledge and apply it to practical problems. There are many parallels to the application of science principles and engineering practices. Both rely on developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematical and computational thinking, engaging in arguments from evidence, and obtaining, evaluating and communicating information. While some students become engaged in the design process, scientific principles can be excluded from the engineering aspects. One unit of study was compared - a nontreatment group using no mathematics and computational thinking to facilitate the design process and a treatment group relying upon mathematics and computational thinking to the design process. The treatment unit required students to collect data and define scientific principles within the design process. Students were given pre-, mid-, and post-tests for the unit of study, an interest survey, and interviews were conducted. Both groups of students indicated the importance of using data in the design process. When students were required to use mathematics and computational thinking in the design process, the results suggested that students exhibited a slight improvement in test scores on the multiple choice and short answer responses. In the students' final reflections, many students expressed a greater appreciation for engineering.Item Implementation and assessment of eingineering design(Montana State University - Bozeman, College of Letters & Science, 2019) Hopkins, Charles Jeffrey; Chairperson, Graduate Committee: Greg FrancisAs we move more towards 21st century education, there are more courses offered in schools and school districts that demand skills in science, technology, engineering, and mathematics. With engineering design-based classes, districts and programs are developing standards and practices, leaving the teachers of these classes to develop many of their own ideas and materials to implement an effective class for their students and their schools until a more unified standard is released. This project was completed with the intent of delivering an effective engineering and design class as a trial run for the American School of Kinshasa. Throughout the treatment students were given surveys to measure confidence and then given pre and posttests to see if students were learning the content outlined in the International Baccalaureate Middle Years Program Design Guide. The treatment was over the first semester of the course. Through the data collection the students gave comments pertaining to the effectiveness of the course and listed the skills they improved by being part of the class. Overall the treatment was effective in having students identify skills they learned and improved, as well as build their confidence when taking on project-based learning tasks. As for their understanding of the content is became apparent that the material needed to be taught at a slower pace allowing formative feedback before summative assessments could accurately assess student understanding.Item Development of an economic, mobile, dual oxygen and pH sensor(Montana State University - Bozeman, Graduate School, 2016) Hall, Jacqueline Paige; Chairperson, Graduate Committee: Peggy Taylor.Optical pH and oxygen sensors have various advantages over Clark amperometric oxygen electrodes, including portability and utility in aqueous environments unsuitable for the Clark electrode. The goal of this study was to affordably develop a dual pH and oxygen-sensing probe that could be used in a variety of settings. This study resulted in the development of the oxygen-sensing component of such a device. This component consisted of Platinum (II)-meso-tetra (2,3,4,5,6-pentafluorophenyl) porphyrin (PtTFPP) suspended in a polystyrene-based matrix. A 405 nm LED excited the PtTFPP phosphorescence and a Hamamatsu Digital Color Sensor S11012-01CR recorded the resultant emission intensities of the porphyrin. A code was written for an Arduino Uno ® microcontroller, to control the LED and color sensor, while recording the appropriate data. The oxygen-sensing component showed expected oxygen sensitivity during oxygen depletion studies.Item Saturn Technical Center(Montana State University - Bozeman, 1992) Peterson, EricItem A contemporary approach to designing the interior of the Boeing 767 - a passenger airline(Montana State University - Bozeman, 1989) Jimeno, Michelle Angela Tutt; Chairperson, Graduate Committee: Pamela Jean Bancroft