Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
4 results
Search Results
Item Injection attack immunity using redundant heterogeneous processing cores(Montana State University - Bozeman, College of Engineering, 2023) Barney, Colter Ross; Chairperson, Graduate Committee: Brock LaMeresTechnology is an integral part of modern society. Devices such as smart lights, locks and appliances are becoming more commonplace. This class of devices are called embedded systems. Embedded systems can be targeted by malicious cyber attacks just as a normal computer can. Unfortunately, many techniques used to secure and protect normal computers do not work on embedded systems. New security techniques must be developed and designed to protect embedded systems. This paper investigates using physically diverse processing cores to defeat cyber attacks in real time. Diverse processing cores were implemented using reconfigurable hardware devices called FPGAs. The use of FPGAs allows diverse cores to be utilized, without losing the benefits gained from standardized processors. The cores implemented were based on a commercial processor made by Texas Instruments (TI). Modeling the diverse cores after a commercial processor enables the cores to utilize development tools created for TI's processor. A complete system was built using diverse processors to prove the feasibility and usability of secure embedded systems. The cores were used to control a realistic embedded system application. While operating, the cores were subjected to a cyber attack, and they were able to nullify the attack. An identical setup was created using the commercially available processor. Attacking the commercial processor compromised the application and reinforced the need for secure systems. The techniques investigated and utilized in this paper can be expanded to increase security in the many embedded systems that have become an essential part of modern lifestyles.Item Smart Composites : evaluation of embedded sensors in composite materials(Montana State University - Bozeman, College of Engineering, 2009) Palmer, Nathan Reed; Chairperson, Graduate Committee: Douglas S. CairnsAs an emerging form of renewable energy, horizontal wind turbines have experienced advancements in improving efficiency and reliability. These advances have pushed the limits of current technology used in wind turbines. Smart blades have been proposed as a method of addressing these limitations. Sensor integration within blade construction is the first step in development of smart blades. Thus, several low cost sensors were chosen, 1 axis strain gages, polyvinylidene fluoride films (PVDF), and single mode fiber optics either coated in acrylate or polyimide. To ensure successful bonding between sensor and composite two surface treatment techniques were developed. The first, dipping of the sensor into a bath of 20% by weight solution of nitric acid and the second was submersion of the sensor in the nitric acid for ten seconds prior to removal. These treatments were compared against sensors not surface treated prior to embedding. These sensors were embedded within samples created of fiberglass and epoxy or vinyl ester resin. Two different material tests were conducted. Tensile testing allowed for evaluation of sensor sensitivity, sensor failure point, material tensile modulus, and material tensile strength. Mode I fracture toughness evaluation, indicated the level of successful bonding which occurred during resin curing. Field Emission Scanning Electron Microscopy (FESEM) was conducted to further confirm the level of bonding between resin and sensor, post fracture. Results for embedded strain gages showed an adverse effect for vinyl ester samples. Epoxy samples fared better, thus concluding manufacturing success for epoxy samples, submersion being preferred, and alternative methods needed for vinyl ester samples. PVDF films had good qualitative FESEM images combined with increasing trends. It was concluded that integration for both resin groups with sensors submerged in nitric acid was successful. Fiber optics coated in acrylate also showed good bonding under FESEM imaging as well as testing. It was thus concluded that submersion was the preferred treatment. Lastly, fiber optics coated in polyimide embedded in vinyl ester composites showed significant drawbacks and it was concluded that alternative methods need exploration. Those embedded in epoxy were successfully integrated and submersion in nitric acid showed the most potential.Item An embedded system for the infrared cloud imager(Montana State University - Bozeman, College of Engineering, 2008) Simpson, Kristie Danielle; Chairperson, Graduate Committee: Joseph A. ShawThe Infrared Cloud Imager (ICI) is a ground-based thermal infrared imaging instrument, with a new version currently in development at Montana State University, to measure cloud cover statistics. The next-generation ICI design incorporates an embedded system for consolidating the controls and sensors for the system. Instead of having dedicated lines to each component of the system, only one connection is needed to the internal microcontroller, and then the microcontroller connects to all other components. The embedded system is capable of supporting digital sensors and controls, analog sensors, and peripherals that communicate serially. In addition, an Ethernet connection is used to communicate with the embedded system inside the ICI system enclosure. The MC9S12NE64 is a 16-bit microcontroller from the Freescale Microcontroller HCS12 family that is capable of supporting the ICI system peripheral devices and was selected for the embedded system. Firmware was developed for the embedded ICI control system that supports TCP/IP Ethernet communications, analog channels, digital channels, and serial communications, and a command set was developed for interfacing with the system peripheral devices. A software application was created to establish an Ethernet connection with the embedded system and test the system commands. A second software application was implemented to act as a serial device connected to the embedded system. The development board for the microcontroller was used to test the analog and digital channels. The software and development board were used together to demonstrate that the ICI embedded system is capable of providing access to all of the ICI system peripheral devices through a single Ethernet connection. The test results verify that the next-generation ICI design is able to successfully incorporate an embedded system for consolidating the controls and sensors for the system.Item Integration of actuators and sensors into composite structures(Montana State University - Bozeman, College of Engineering, 2009) Ehresman, Jonathan David; Chairperson, Graduate Committee: Douglas S. CairnsThe need for more efficient wind turbine blades is growing in our society. One step in accomplishing this task would be to make wind turbines blades into smart structures. A smart structure is one that incorporates sensors, complete control systems, and active control devices, in order to shed, or redistribute the load placed on the structure. For wind turbine blades this means changing the shape of the blade profile as it encounters different wind conditions. In order to have active control surfaces functioning on wind turbine blades, the existing blades would have to be retrofitted, and the new blades being manufactured would have to be redesigned. There are different control surfaces to consider: gurney flaps and false wall flaps are two that can perturb the boundary layer across the low pressure side of the wing. A flat plate and blade section test bed will be manufactured in order to gather empirical data from wind tunnel testing. For actuation of the control surface there are many choices: electrical, hydraulic, pneumatic, and electro-hydrostatic. These actuator types will be investigated under a set of criterion to determine the best one for turbine blade application. Sensors will be investigated with respect to their use in sensing strain, temperature, acceleration, humidity, and delamination. Sensors are also used for health monitoring. This helps engineers design under a damage tolerant philosophy as opposed to a safe life structure philosophy. These sensors will be placed into laminates and different surface treatments will be reviewed to find the best configuration for each sensor. The sensor will be cleaned with isopropyl alcohol, dipped in a 20% by mass solution of nitric acid, and submerged in a 20% by mass solution of nitric acid for 10 seconds. Detailed surface images will be taken of sensors with different surface treatments in order to better understand the bonding between the sensor and laminate. These images indicate that submerging the sensors into 20% by mass solution of nitric acid is the best surface treatment.