Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
4 results
Search Results
Item Rethinking water conflict and cooperation: a re-analysis of interviews in Montana and an example study from the Big Hole River watershed(Montana State University - Bozeman, College of Letters & Science, 2024) Bjorklund, Erin Nicole; Chairperson, Graduate Committee: Sarah P. Church; This is a manuscript style paper that includes co-authored chapters.Climate change heightens the supply and demand imbalance for freshwater, increasing the potential for conflict between water users. However, conflict is not the only outcome, as water demands can also create space for cooperation. The Basins at Risk (BAR) scale is one of the most prominent numerical measurements for analyzing the level of conflict or cooperation in freshwater-related events reported in public news sources. However, few studies in the U.S. West and none within Montana have utilized this method and little has been done to investigate alternative applications of the BAR scale beyond news event analysis. Therefore, this study examines 1) water conflict and cooperation trends in Montana and 2) how interview data can contribute to nuanced understandings of water conflict and cooperation. The intensity and type of issue for water events in Montana were cataloged and analyzed in a re-analysis of 63 interviews conducted for the Montana Drought Vulnerability Assessment. Results revealed that from the perspective of Montanan water stakeholders, cooperation over water resources outweighs conflict, and low-intensity conflictive and cooperative events are more prominent. The re-analysis results informed the selection of an example study utilizing the BAR scale to analyze event data (n=314) and primary interviews (n=11) collected in the Big Hole Watershed, Montana. Event data was sampled from 7 Montana news sources between the years 2007 and 2023. Primary interviews were conducted in February, March, and April 2024 with a variety of stakeholders in the Big Hole River Watershed (e.g., anglers, ranchers, fishing guides, Big Hole Watershed Committee board members, Fish, Wildlife and Parks). These data show the value of including primary interviews in a study utilizing the BAR scale. Moreover, results from this study can help researchers and resource managers monitor and identify water conflict and cooperation, by showing a nuanced understanding of conflict and cooperation.Item Major geographical concepts emphasized in grades 7 and 8 of Montana Schools(Montana State University - Bozeman, 1961) Woodmansey, Robert FrankItem He has given example for our flight : Antony's cartographic exit from 'Antony and Cleopatra'(Montana State University - Bozeman, College of Letters & Science, 2010) Davison, Katherine Anne; Chairperson, Graduate Committee: Gretchen E. MintonThis project begins with the observation that mapping culture in Early Modern England underwent explosive changes that profoundly effected the spatial perspectives of individuals. In order to understand the extent of such effects, this thesis examines the resonance between maps and theater in Early Modern England using Shakespeare's Antony of Antony and Cleopatra as a model for how individuals may have responded to maps in Early Modern England. The subject of conflicting spatial desires, Antony and his very body become a site of tension and resistance both within the play and upon the stage. As such, this project argues that Antony's body in Antony and Cleopatra demonstrates not only an Early Modern English anxiety regarding mapped space, but also a method of resistance to mapped space for Early Modern audiences.Item Satellite monitoring of current and historical development patterns in Big Sky, Montana : 1990-2005(Montana State University - Bozeman, College of Agriculture, 2008) Campos, Natalie Monique; Chairperson, Graduate Committee: Rick L. Lawrence.The goal of this study was to map current and historical development patterns in Big Sky, Montana. Object-oriented classifications of a high-resolution Quickbird image and a fused Quickbird and LiDAR image were compared. Results demonstrated that object-oriented classification can be used to overcome the difficulty associated with pixel-based classification of high-resolution images through the addition of contextual metrics to the classification process. The fused classification resulted in decreased errors of commission and omission for each class, but the differences between the classifications were not statistically significant. The fused classification represented the shapes of land cover objects more precisely based on visual assessment. Temporal analysis of land cover patterns was accomplished successfully by using a generalized version of the fused classification to map historical development. Previous research on multitemporal mapping of multiresolution images has been lacking. Our research showed that the generalization of a high-resolution classification can be used as training data for a historical image. Normalized Difference Vegetation Index (NDVI) image differencing and boosted classification trees were used to identify and classify areas of change. This resulted in the successful identification of temporal changes in land cover due to Mountain Resort Development (MRD). Statistical pattern analysis revealed correlations between MRD and the variables distance-to-streams, distance-to-roads, slope, and aspect. Forest changes were found to be disproportionately located farther away from streams and on lower slopes. Grassland changes disproportionately occurred closer to steams, but overall grassland change was proportional to grassland land cover in 1990. Classification tree analysis indicated the variables distance-to-streams, distance-to-roads, slope, and aspect explained 87% of the variance for the change classes and might be related to amenity development. There was an increase in impervious surfaces and a decrease in both forests and grassland areas between the years 1990-2005. Loss of forest and grassland area can result in increased habitat fragmentation and can have negative consequences for ecosystems within the areas. Overall, this project successfully mapped both current and historical development patterns in Big Sky, Montana. This allowed for statistical pattern analysis of variables that have been shown to be correlated with MRD.