Montana INBRE (IDeA Networks of Biomedical Research Excellence)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/93

The Montana INBRE Program (IDeA Networks of Biomedical Research Excellence) is a five-year award (2009-2014) by the National Institute of General Medical Sciences (NIGMS) division of the National Institutes of Health (NIH) that builds on the previous successes of the first five-year MT INBRE program (2004-2009) and the three-year BRIN (Biomedical Research Infrastructure Networks) program (2001-2004) awarded to Montana State University. Montana INBRE continues to focus on increasing the biomedical research capacity of Montana by building research infrastructure, supporting faculty and student research, and fostering a state-wide collaborative network. The pathogenesis of infectious disease and health issues related to the environment are two of Montana INBRE’s research foci, areas in which the state is strategically positioned to excel. In addition, MT INBRE is expanding its research into the field of health disparities, an area of great relevance to the state. INBRE positions Montana as a leader in biomedical research and significantly increases education, research, and, ultimately, employment opportunities in the state.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Discovery of a splicing regulator required for cell cycle progression
    (2013-02) Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Meng L.; Weiss, Louis M.; Kim, Kami; White, Michael W.
    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.
  • Thumbnail Image
    Item
    A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor
    (2011-12) Sheiner, Lilach; Demerly, Jessica L.; Poulsen, Nicole; Beatty, Wandy L.; Lucas, Olivier; Behnke, Michael S.; White, Michael W.; Striepen, Boris
    Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes – a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle.
  • Thumbnail Image
    Item
    Coordinated progression through two subtranscriptomes underlies the tachyzoitecycle of Toxoplasma gondii
    (2010-08) Behnke, Michael S.; Wootton, John C.; Lehmann, Margaret M.; Radke, Josh B.; Lucas, Olivier; Nawas, Julie; Sibley, L. David; White, Michael W.
    Background Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. Methodology/Principal Findings Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. Conclusion/Significance Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.