Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Application of functionalized cellulose nanocrystals to improve their dispersion in polymer matrix and enhance the thermo-mechanical properties of polymer composites
    (Montana State University - Bozeman, College of Engineering, 2023) Chanda, Saptaparni; Chairperson, Graduate Committee: Dilpreet S. Bajwa; This is a manuscript style paper that includes co-authored chapters.
    In the past few years, Cellulose nanocrystals (CNC) and its derivatives are exploited as potential bio-based nanofillers for functional polymer composites. The main challenge for manufacturing CNC-based composites is to disperse CNC uniformly in the hydrophobic polymer matrix. The hydrophilicity of CNC hindered their uniform distribution in the matrix and reduced the overall thermal, mechanical, and physical properties of the composite system. To overcome this challenge, several methods have been developed, such as physical and chemical modification of CNC. Also, polymer-based composites are highly flammable in nature and can cause severe life-threatening incidence. The flame-retardants available commercially should be added to the composite for a very high add-on% and toxic in nature, which is not eco-friendly and can be dangerous for humans. In this study, two critical research gaps are addressed: 1) uniform dispersion of CNC in a hydrophobic matrix, and 2) improving fire-retardancy of polymer composites by using non-toxic inorganic oxides. In the first part, a chemical compound, aminosilane was used as a dispersing agent for CNC in polyethylene oxide (PEO) based composite films and their thermo-chemical properties were analyzed. In the next part, the silanated CNCs are coated with nano ZnO and nano B2O3 and added as a functional filler to manufacture high density polyethylene (HDPE) based composites. The ZnO coated composites showed a significant improvement in thermo-mechanical properties of the composites even at a low add-on%, due to the smaller size and higher surface area of nano ZnO. The lignin containing CNC (LCNC) was also used as a functional additive along with nano ZnO and B2O 3. The hydrophobic character of lignin could not improve the dispersion of LCNC in the HDPE matrix because of the reduction of the aspect ratio and aggregate formation of LCNC/inorganic oxides during freeze drying. The role of the new age material graphene quantum dots (GQD) as a dispersing agent for CNC was also exploited. The CNC/GQD inclusion complex showed excellent dispersion behavior in HDPE matrix along with the significant improvement in thermo-mechanical properties of the composites, even at very low add-on% of GQD. The preliminary idea of using CNC/GQD inclusion complex as an energy storage device was also developed. Overall, the current work addresses the two main challenges which hindered the functional application of CNC based polymer composites and developed safe, effective, and eco-friendly methods to overcome those challenges. CNC based polymer composites have strong potential to be used in various industrial applications from fire-retardant material to energy storage device.
  • Thumbnail Image
    Item
    Flow and transport studies of porous systems by magnetic resonance microscopy and Lattice Boltzmann simulations
    (Montana State University - Bozeman, College of Engineering, 2010) Brosten, Tyler Ryan; Chairperson, Graduate Committee: Sarah L. Codd
    Nuclear magnetic resonance experiments and Lattice-Boltzmann simulations are powerful techniques for studying pore scale dynamics in porous media. Several applications of these methods to the study of pore scale hydrodynamics and transport are discussed. Of special interest are concepts relating to pore structure characterization. In the first application it is shown that nuclear magnetic resonance measurements of pre-asymptotic transport dynamics in random open cell foams provide a characteristic structure length scale. These measurements and Lattice-Boltzmann simulations for a model foam structure demonstrate dynamical behavior similar to lower porosity consolidated granular porous media; suggesting a generalized approach to pore structure characterization. Normalizing the data by the characteristic length collapses data for different foam samples and mono-disperse packed beds. The non-equilibrium statistical mechanics theory of pre-asymptotic dispersion is used to model the hydrodynamic dispersive dynamics. In the second application transport of hard sphere colloidal particles under flow through an open cell foam is studied using nuclear magnetic resonance. The temporal dynamics of the colloidal particles and suspending fluid phase are obtained through spectral chemical resolution. The data is interpreted in the broader context of classic hydrodynamic dispersion theory and mechanisms of transport for each phase. In the third application pore scale hydrodynamics of flow over a model porous surface are investigated using three dimensional Lattice-Boltzmann simulations and nuclear magnetic resonance. The Lattice-Boltzmann and nuclear magnetic resonance data are used to interpret classic interfacial hydrodynamic boundary conditions. Finally, in the fourth application a study of magnetic resonance microscopy to novel tape cast porous ceramics is conducted.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.