Artifact-free quantification and sequencing of rare recombinant viruses by using drop-based microfluidics

dc.contributor.authorTao, Ye
dc.contributor.authorRotem, Assaf
dc.contributor.authorZhang, Huidan
dc.contributor.authorCockrell, Shelley K.
dc.contributor.authorKoehler, Stephan A.
dc.contributor.authorChang, Connie B.
dc.contributor.authorUng, Lloyd W.
dc.contributor.authorCantalupo, Paul G.
dc.contributor.authorRen, Yukun
dc.contributor.authorLin, Jeffrey S.
dc.contributor.authorFeldman, Andrew B.
dc.contributor.authorWobus, Christiane E.
dc.contributor.authorPipas, James M.
dc.contributor.authorWeitz, David A.
dc.date.accessioned2017-07-05T16:30:26Z
dc.date.available2017-07-05T16:30:26Z
dc.date.issued2015-10
dc.description.abstractRecombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 x 10(-4) ± 2 x 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.en_US
dc.description.sponsorshipDefense Advanced Research Projects Agency (HR0011-11-C-0093)en_US
dc.identifier.citationY. Tao, A. Rotem, H. Zhang, S. K. Cockrell, S. A. Koehler, C. B. Chang, L. W. Ung, P. G. Cantalupo, Y. Ren, J. S. Lin, A. B. Feldman, C. E. Wobus, J. M. Pipas, D. A. Weitz, ChemBioChem 2015, 16, 2167.en_US
dc.identifier.issn1439-4227
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13173
dc.titleArtifact-free quantification and sequencing of rare recombinant viruses by using drop-based microfluidicsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage2167en_US
mus.citation.extentlastpage2171en_US
mus.citation.issue15en_US
mus.citation.journaltitleChemBioChemen_US
mus.citation.volume16en_US
mus.contributor.orcidChang, Connie B.|0000-0001-9555-8223en_US
mus.data.thumbpage5en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1002/cbic.201500384en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
15-048_Artifact-free_quantification_A1b.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
Description:
Artifact-free quantification and sequencing of rare recombinant viruses by using drop-based microfluidics (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.