Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms

dc.contributor.authorGardner, Lawrence Robert
dc.contributor.authorStewart, Philip S.
dc.date.accessioned2017-08-17T17:29:26Z
dc.date.available2017-08-17T17:29:26Z
dc.date.issued2002-12
dc.description.abstractA continuous flow reactor system was developed to evaluate the efficacy of antimicrobial treatments against sulfate-reducing bacterial biofilms. An annular reactor operating at a nominal dilution rate of 0.5 h-1 was fed one-tenth strength Postgate C medium diluted in 1.5% NaCl and was inoculated with a mixed culture enriched from oilfield-produced water on the same medium. Thin biofilms developed in this reactor after 2 days of operation. The activity of these biofilms resulted in approximately 50 mg S l-1 of sulfide at steady state prior to biocide treatment. Biocide efficacy was quantified by recording the time required for sulfide production to recover following an antimicrobial treatment. In a control experiment in which pure water was applied, the time required to reach 10 mg S l-1 sulfide after the treatment was 1.7±1.2 h, whereas the time to reach this level of sulfide after a pulse dose of 500 mg l-1 glutaraldehyde was delayed to 61±11 h. Nitrite treatment suppressed sulfide production as long as the nitrite concentration remained above 15 mg N l-1. Sulfide production recovered more rapidly after nitrite treatment than it did after glutaraldehyde treatment. Gardner, L.R., P.S. Stewart, "Action of Glutaraldehyde and Nitrite Against Sulfate-Reducing Bacterial Biofilms," J. Industrial Microbiol. Biotech. 29(6):354 (2002).en_US
dc.identifier.citationGardner, L.R., P.S. Stewart, "Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms," J. Industrial Microbiol. Biotech., 29(6):354 (2002)en_US
dc.identifier.issn1367-5435
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13542
dc.titleAction of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilmsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage354en_US
mus.citation.extentlastpage360en_US
mus.citation.issue6en_US
mus.citation.journaltitleJournal of Industrial Microbiology & Biotechnologyen_US
mus.citation.volume29en_US
mus.contributor.orcidStewart, Philip S.|0000-0001-7773-8570en_US
mus.data.thumbpage3en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1038/sj/jim/7000284en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
02-053_Action_of_glutaraldehyde_.pdf
Size:
239.95 KB
Format:
Adobe Portable Document Format
Description:
Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.