Tunable Surfaces and Films from Thioester Containing Microparticles
dc.contributor.author | Martinez, Alina M. | |
dc.contributor.author | Cox, Lewis M. | |
dc.contributor.author | Darabi, Amir | |
dc.contributor.author | Bongiardina, Nicholas J. | |
dc.contributor.author | Nowman, Christopher N. | |
dc.date.accessioned | 2023-01-03T18:11:10Z | |
dc.date.available | 2023-01-03T18:11:10Z | |
dc.date.issued | 2022-06 | |
dc.description | This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acsami.2c05113 | en_US |
dc.description.abstract | Reported here, thioester containing microparticles were designed with 40% excess thiol to enable thiol–thioester exchange to facilitate the formation of cohesive films from the particles. A thiol-Michael dispersion polymerization was used to generate thioester containing microparticles with a diameter of 4.0 ± 0.4 μm. The particles were then swollen with a base at varying concentrations to activate the thiol–thioester exchange and subsequently compressed between two glass slides. Resultant films were characterized over time with profilometry and atomic force microscopy (AFM) to infer particle coalescence at different catalyst loadings and times. Tensile tests were performed confirming the structural integrity of the particle-based films. Furthermore, microparticles were welded to a nondynamic network demonstrating feasibility in potential applications to generate materials containing differing mechanical properties. Being able to control the functionality of particles, and thus mechanical properties of the resultant films, is also important for applications in coatings, adhesives, and 3D printing where spatial patterning or selective material property control is needed. | en_US |
dc.identifier.citation | Alina M. Martinez, Lewis M. Cox, Amir Darabi, Nicholas J. Bongiardina, and Christopher N. Bowman ACS Applied Materials & Interfaces 2022 14 (23), 27177-27186 DOI: 10.1021/acsami.2c05113 | en_US |
dc.identifier.issn | 1944-8252 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/17568 | |
dc.language.iso | en_US | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights | copyright American Chemical Society 2022 | en_US |
dc.rights.uri | https://www.acs.org/copyright.html | en_US |
dc.subject | particle coalescence | en_US |
dc.subject | covalent adaptable network | en_US |
dc.subject | thiol−thioester exchange | en_US |
dc.subject | spatial patterning | en_US |
dc.subject | spatial deposition | en_US |
dc.subject | interfacial welding | en_US |
dc.title | Tunable Surfaces and Films from Thioester Containing Microparticles | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 1 | en_US |
mus.citation.extentlastpage | 28 | en_US |
mus.citation.issue | 23 | en_US |
mus.citation.journaltitle | ACS Applied Materials & Interfaces | en_US |
mus.citation.volume | 14 | en_US |
mus.identifier.doi | 10.1021/acsami.2c05113 | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.department | Mechanical & Industrial Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |