Electric current and magnetic field effects on bacterial biofilms

dc.contributor.advisorChairperson, Graduate Committee: Phillip S. Stewarten
dc.contributor.authorSandvik, Elizabeth Louiseen
dc.contributor.otherBruce R. McLeod, Albert E. Parker, Philip S. Stewart were co-authors of the article, 'Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid' in the journal 'PLoS ONE' which is contained within this thesis.en
dc.date.accessioned2016-01-03T17:19:21Z
dc.date.available2016-01-03T17:19:21Z
dc.date.issued2014en
dc.description.abstractThe ability of bacteria to form and grow as biofilm presents a major challenge in clinical medicine. Through this work, two alternative electromagnetic treatment strategies were investigated to combat bacterial biofilms like those that cause chronic infections on indwelling medical devices. Direct electric current (DC) was applied at current densities of 0.7 to 1.8 mA/cm 2 alone and in conjunction with antibiotic. Unlike most previous studies, chloride ions were included in the treatment solution at a physiologically-relevant concentration. Using this approach, low levels of DC alone were demonstrated to have a dose-responsive, biocidal effect against Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms with no synergistic enhancement of antibiotic activity. Through a series of experiments using chemical measures, cell viability, and global gene expression, electrolytic generation of chlorine, a potent disinfectant, was identified as the predominant mechanism by which DC kills bacteria in biofilm. The second treatment strategy investigated weak, extremely low-frequency magnetic fields (ELF-MFs) as a noninvasive approach, involving an extension of concepts from well-studied ELF-MF effects observed in eukaryotic systems to bacterial biofilm. S. epidermidis biofilms grown in weak, extremely low-frequency magnetic fields (ELF-MFs) at Ca 2+ and K + ion resonance frequencies were assessed using global gene expression to determine if S. epidermidis in biofilm detect and respond to ELF-MFs. Frequency-dependent changes in gene expression were observed with upregulation of genes involved in transposase activity, signal transduction systems, and membrane transport processes indicating possible effects consistent with theories of ELF-MF induced changes in ion transport reported in eukaryotic cells. This is the first transcriptome study to indentify ELF-MF effects in bacteria. While no direct biocidal effect was observed with ELF-MF treatment, alteration of membrane transport processes could potentially modify biofilm susceptibility to certain antibiotics. The ELF-MF responses identified in this work provide a platform for future study.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/9366en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.rights.holderCopyright 2014 by Elizabeth Louise Sandviken
dc.subject.lcshBiofilmsen
dc.subject.lcshElectric currents, Directen
dc.subject.lcshELF electromagnetic fieldsen
dc.subject.lcshClinical medicineen
dc.titleElectric current and magnetic field effects on bacterial biofilmsen
dc.typeDissertationen
thesis.catalog.ckey2769778en
thesis.degree.committeemembersMembers, Graduate Committee: Bruce McLeod; Robin Gerlach; Joseph D. Seymouren
thesis.degree.departmentChemical & Biological Engineering.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage313en

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
SandvikE0814.pdf
Size:
18.49 MB
Format:
Adobe Portable Document Format
Copyright (c) 2002-2022, LYRASIS. All rights reserved.