Liquid flow in heterogeneous biofilms

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



Liquid flow was studied in aerobic biofilms, consisting of microbial cell clusters (discrete aggregates of densely packed cells) and interstitial voids. Fluorescein microinjection was used as a qualitative technique to determine the presence of flow in cell clusters and voids. Flow velocity profiles were determined by tracking fluorescent latex spheres using confocal microscopy. Liquid was flowing through the voids and was stagnant in the cell clusters. Consequently, in voids both diffusion and convection may contribute to mass transfer, whereas in cell clusters diffusion is the dominant factor. The flow velocity in the biofilm depended on the average flow velocity of the bulk liquid. The velocity profiles in biofilms were linear and the velocity was zero at the substratum surface. The velocity gradients within biofilms were 50% of that near walls without biofilm coverage. The influence of the biofilm roughness on the flow velocity profiles was similar to that caused by rigid roughness elements. © 1994 John Wiley & Sons, Inc.




de Beer, D., P. Stoodley, and Z. Lewandowski, "Liquid flow in heterogeneous biofilms," Biotechnology and Bioengineering, 44(5):636-641 (1994).
Copyright (c) 2002-2022, LYRASIS. All rights reserved.