Immersions of surfaces
dc.contributor.advisor | Co-chairs, Graduate Committee: David Ayala and Ryan Grady | en |
dc.contributor.author | Howard, Adam Jacob | en |
dc.date.accessioned | 2022-06-10T18:58:50Z | |
dc.date.available | 2022-06-10T18:58:50Z | |
dc.date.issued | 2022 | en |
dc.description.abstract | To determine the existence of a regular homotopy between two immersions, f, g : M --> N, is equivalent to showing that they lie in the same path component of the space Imm(M, N). We identify the connected components, pi 0 Imm(W g, M), of the space of immersions from a closed, orientable, genus-g surface W g into a parallelizable manifold M. We also identify the higher homotopy groups of Imm(W g, M) in terms of the homotopy groups of M and the Stiefel space V 2 (n). We then use this work to characterize immersions from tori into hyperbolic manifolds as self covers of a tubular neighborhood of a closed geodesic up to regular homotopy. Finally, we identify the homotopy-type of the space of framed immersions from the torus to itself. | en |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/16633 | en |
dc.language.iso | en | en |
dc.publisher | Montana State University - Bozeman, College of Letters & Science | en |
dc.rights.holder | Copyright 2022 by Adam Jacob Howard | en |
dc.subject.lcsh | Manifolds (Mathematics) | en |
dc.subject.lcsh | Homotopy theory | en |
dc.subject.lcsh | Surfaces | en |
dc.subject.lcsh | Torus (Geometry) | en |
dc.subject.lcsh | Topological spaces | en |
dc.title | Immersions of surfaces | en |
dc.type | Dissertation | en |
mus.data.thumbpage | 35 | en |
thesis.degree.committeemembers | Members, Graduate Committee: Jaroslaw Kwapisz; Lisa Davis; Lukas Geyer | en |
thesis.degree.department | Mathematical Sciences. | en |
thesis.degree.genre | Dissertation | en |
thesis.degree.name | PhD | en |
thesis.format.extentfirstpage | 1 | en |
thesis.format.extentlastpage | 146 | en |