Wood–Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah
Date
2024-07
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Abstract
Little is known of primary production in dark hypersaline ecosystems despite the prevalence of such environments on Earth today and throughout its geologic history. Here, we generated and analyzed metagenome-assembled genomes (MAGs) organized as operational taxonomic units (OTUs) from three depth intervals along a 30-cm sediment core from the north arm of Great Salt Lake, Utah. The sediments and associated porewaters were saturated with NaCl, exhibited redox gradients with depth, and harbored nitrogen-depleted organic carbon. Metabolic predictions of MAGs representing 36 total OTUs recovered from the core indicated that communities transitioned from aerobic and heterotrophic at the surface to anaerobic and autotrophic at depth. Dark CO2 fixation was detected in sediments and the primary mode of autotrophy was predicted to be via the Wood–Ljungdahl pathway. This included novel hydrogenotrophic acetogens affiliated with the bacterial class Candidatus Bipolaricaulia. Minor populations were dependent on the Calvin cycle and the reverse tricarboxylic acid cycle, including in a novel Thermoplasmatota MAG. These results are interpreted to reflect the favorability of and selectability for populations that operate the lowest energy requiring CO2-fixation pathway known, the Wood–Ljungdahl pathway, in anoxic and hypersaline conditions that together impart a higher energy demand on cells.
Description
Keywords
acetogen, acetothermia, Ca. Bipolaricaulia, carbon fixation, primary production, thermoplasmatota
Citation
Anna Shoemaker, Andrew Maritan, Su Cosar, Sylvia Nupp, Ana Menchaca, Thomas Jackson, Aria Dang, Bonnie K Baxter, Daniel R Colman, Eric C Dunham, Eric S Boyd, Wood–Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah, FEMS Microbiology Ecology, Volume 100, Issue 8, August 2024, fiae105, https://doi.org/10.1093/femsec/fiae105
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as cc-by