Daily signals in nitrate processing provide a holistic perspective on stream corridor hydrologic and biogeochemical function
dc.contributor.advisor | Chairperson, Graduate Committee: Robert A. Payn | en |
dc.contributor.author | Foster, Madison Jo | en |
dc.contributor.other | This is a manuscript style paper that includes co-authored chapters. | en |
dc.date.accessioned | 2023-09-08T21:36:12Z | |
dc.date.available | 2023-09-08T21:36:12Z | |
dc.date.issued | 2023 | en |
dc.description.abstract | Understanding interactive pathways of biogeochemical reaction and water movement in stream corridors is critical given the role stream corridors play in mitigating nitrate loading from agricultural watersheds. However, few studies consider the interactive effects of nitrate loading, riparian processing, and stream ecosystem processing, which may limit abilities to predict downstream nitrate delivery. Riparian groundwater inputs and stream ecosystem processing may vary due to daily cycles in evapotranspiration or stream ecosystem primary production. Recent advances in high-frequency monitoring of stream chemistry throughout the day exhibit potential to explore both hydrologic and biogeochemical influences on nitrate attenuation. In this thesis, I explore how diel variations in stream reach nitrate processing can provide holistic perspectives on the attenuation of nitrate along stream corridors within a watershed that is heavily influenced by agricultural land use. Nitrate processing is defined as the evident changes in nitrate concentration in parcels of water as they travel along a given reach of a stream, as measured from nitrate sensors located at the head and base of ca. 0.5 km reaches. To understand controls on diel variation in nitrate processing, we measured diel processing signals in agricultural headwater reaches in Central Montana, USA spanning variable atmospheric and flow conditions from March through August in 2020-2022. Across 168 days with valid data, most signals exhibited little diel variation (n = 106) and this lack of variation occurred most frequently during cooler and shorter days. In contrast, signals with greater variation were common during longer days, warmer temperatures, and lower flows (n = 62). This seasonal shift in patterns suggests that solar radiation and stream flow are primary controls on diel nitrate processing signals in these low-order reaches. In addition to diel variation, less overall nitrate attenuation in the study reach with direct inputs of high-nitrate upland waters suggest that the degree of hydrologic connection to upland aquifers influences apparent reach nitrate processing. This work highlights how understanding the drivers of diel processing signals may lead to a more holistic understanding of how multiple interacting processes in stream corridors influence nitrate delivery to downstream ecosystems. | en |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/17621 | |
dc.language.iso | en | en |
dc.publisher | Montana State University - Bozeman, College of Agriculture | en |
dc.rights.holder | Copyright 2023 by Madison Jo Foster | en |
dc.subject | Biogeochemistry | en |
dc.subject | Hydrology | en |
dc.subject.lcsh | Stream ecology | en |
dc.subject.lcsh | Circadian rhythms | en |
dc.subject.lcsh | Hydrology | en |
dc.subject.lcsh | Groundwater--Pollution | en |
dc.subject.lcsh | Nitrates | en |
dc.title | Daily signals in nitrate processing provide a holistic perspective on stream corridor hydrologic and biogeochemical function | en |
dc.type | Thesis | en |
mus.data.thumbpage | 48 | en |
thesis.degree.committeemembers | Members, Graduate Committee: E. N. Jack Brookshire; Stephanie A. Ewing | en |
thesis.degree.department | Land Resources & Environmental Sciences. | en |
thesis.degree.genre | Thesis | en |
thesis.degree.name | MS | en |
thesis.format.extentfirstpage | 1 | en |
thesis.format.extentlastpage | 70 | en |
Files
Original bundle
1 - 1 of 1
- Name:
- foster-daily-2023.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format
- Description:
- Daily signals in nitrate processing provide a holistic perspective on stream corridor hydrologic and biogeochemical function (PDF)
License bundle
1 - 1 of 1