Predictive modeling for hot water inactivation of planktonic and biofilm-associatedSphingomonas parapaucimobilis to support hot water sanitization programs

dc.contributor.authorKaatz Wahlen, L.
dc.contributor.authorParker, Albert E.
dc.contributor.authorWalker, Diane K.
dc.contributor.authorPasmore, M.
dc.contributor.authorSturman, Paul J.
dc.date.accessioned2016-12-23T20:29:02Z
dc.date.available2016-12-23T20:29:02Z
dc.date.issued2016-06
dc.description.abstractHot water sanitization is a common means to maintain microbial control in process equipment for industries where microorganisms can degrade product or cause safety issues. This study compared the hot water inactivation kinetics of planktonic and biofilm-associated Sphingomonas parapaucimobilis at temperatures relevant to sanitization processes used in the pharmaceutical industry, viz. 65, 70, 75, and 80°C. Biofilms exhibited greater resistance to hot water than the planktonic cells. Both linear and nonlinear statistical models were developed to predict the log reduction as a function of temperature and time. Nonlinear Michaelis-Menten modeling provided the best fit for the inactivation data. Using the model, predictions were calculated to determine the times at which specific log reductions are achieved. While ≥80°C is the most commonly cited temperature for hot water sanitization, the predictive modeling suggests that temperatures ≥75°C are also effective at inactivating planktonic and biofilm bacteria in timeframes appropriate for the pharmaceutical industry.en_US
dc.identifier.citationKaatz Wahlen L, Parker A, Walker D, Pasmore M, Sturman P “Predictive modeling for hot water inactivation of planktonic and biofilm-associatedSphingomonas parapaucimobilis to support hot water sanitization programs,” Biofouling, 2016 Aug;32(7):751-61.en_US
dc.identifier.issn0892-7014
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/12401
dc.titlePredictive modeling for hot water inactivation of planktonic and biofilm-associatedSphingomonas parapaucimobilis to support hot water sanitization programsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage751en_US
mus.citation.extentlastpage761en_US
mus.citation.issue7en_US
mus.citation.journaltitleBiofoulingen_US
mus.citation.volume32en_US
mus.data.thumbpage8en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1080/08927014.2016.1192155en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCell Biology & Neuroscience.en_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2016-028_Biofouling_A1b.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format
Description:
Predictive modeling for hot water inactivation of planktonic and biofilm-associatedSphingomonas parapaucimobilis to support hot water sanitization programs (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.