Omics approaches identify molecular mechanisms of arsenic-microbial interactions

Thumbnail Image



Journal Title

Journal ISSN

Volume Title


Montana State University - Bozeman, College of Letters & Science


Arsenic is a class I carcinogen and causes various cancers and diseases. Its toxicity, prevalence, and potential for human exposure has classified arsenic as the number one environmental toxin according to the Environmental Protection Agency. Contamination of groundwater and soil leads to over 200 million human exposures above the health limit. In every environment where arsenic and microbes coexist, microbes are the principal drivers of arsenic speciation, which is directly related to bioavailability, toxicity, and bioaccumulation. These speciation events drive arsenic behavior in the soil, water, and as recent data suggests, human-associated microbiomes. This dissertation details arsenic-microbial interactions through an omics platform, utilizing transcriptomics, metabolomics, and proteomics profiling as a way to globally assess the impacts of arsenic exposure. This work followed two main aims: (1) characterize cell metabolism during arsenic exposure in soil bacterium Agrobacterium tumefaciens 5A, a model organism for arsenite oxidation, and (2) assess the impacts of specific arsenic-processing bacteria within the gut microbiome of mammals. The results of this work provide a foundational understanding for how arsenic speciation events are regulated and how they affect nutrient cycling in environmental systems, which is necessary for bioremediation and health initiatives.




Copyright (c) 2002-2022, LYRASIS. All rights reserved.