Epiphytic lichens, nitrogen deposition and climate in the US northern Rocky Mountain states

dc.contributor.advisorChairperson, Graduate Committee: David Robertsen
dc.contributor.authorGrenon, Jill Annen
dc.contributor.otherDavid W. Roberts, Mark E. Fenn, Linda H. Geiser and Sarah Jovan were co-authors of the article, 'Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River range, WY' in the journal 'Journal of air & waste management association' which is contained within this thesis.en
dc.contributor.otherDavid W. Roberts and Linda H. Geiser were co-authors of the article, 'Epiphytic lichen indication of nitrogen deposition and climate conditions in the Northern Rocky Mountains' in the journal 'Environmental pollution' which is contained within this thesis.en
dc.contributor.otherDavid W. Roberts and Linda H. Geiser were co-authors of the article, 'Climate patterns as indicated by epiphytic lichen communities: a forest inventory and analysis indicator model for the NW interior mountains, USA' in the journal 'Government technical report' which is contained within this thesis.en
dc.date.accessioned2013-06-25T18:37:17Z
dc.date.available2013-06-25T18:37:17Z
dc.date.issued2012en
dc.description.abstractForested ecosystems in the NW Interior Mountains (NWIM) of the United States are jeopardized by degrading air quality and changes in climate regimes. Monitoring and tracking changes in air quality and climate through instrumentation alone can be an expensive and challenging task. Biomonitors offer a cost-effective way to maximize monitoring resolution. This thesis explored the utility of lichens as biomonitors across three sections of the NWIM. First, in the Wind River Range, WY, nitrogen concentrations (%N) in lichen thalli were calibrated with measurements of canopy throughfall N deposition. A strong correlation verified % N as a useful metric to estimate N deposition. Nitrogen deposition in the Boulder drainage, closest in proximity to large natural gas drilling operations, was clearly elevated above estimated background conditions and measurements from other drainages. Degraded lichen communities were observed at deposition levels of 4.0 kg N ha -¹year -¹. The second study used lichen community composition, elemental analysis, and lichen functional groups to analyze the importance of nitrogen deposition and climate on lichen communities along the northern Rocky Mountains. Temperature and relative humidity were the most important climatic influences on community structure. A nitrogen pollution signal was independent of climate. The relationship between % N in lichen thalli and throughfall N (study 1) was used to estimate N deposition along the northern Rocky Mountains. Eutroph (N-tolerant) and oligotroph (N-sensitive) functional group indices were correlated with both N deposition and climate. Elevated N deposition (twice background conditions) was most notable around Bozeman, MT and Pinedale, WY. The final study stratified plots across the NWIM by latitude and longitude and found precipitation, dew point, and temperature were important variables to lichen community composition. Eutroph and oligotroph distributions were partially accounted for by climate; unfortunately no N data were available for comparison to lichen communities. The models created can be utilized for monitoring changes in lichen communities over time and to predict N deposition and climate conditions for new plots. Additionally, these models can be used to address management and conservation questions related to individual lichen species, lichen communities, forest health, air quality, and climate conditions.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/1385en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.rights.holderCopyright 2012 by Jill Ann Grenonen
dc.subject.lcshEnvironmental monitoringen
dc.subject.lcshLichen communitiesen
dc.subject.lcshClimatic changesen
dc.subject.lcshAir qualityen
dc.subject.lcshForests and forestryen
dc.titleEpiphytic lichens, nitrogen deposition and climate in the US northern Rocky Mountain statesen
dc.typeThesisen
thesis.catalog.ckey1932843en
thesis.degree.committeemembersMembers, Graduate Committee: Catherine A. Zabinski; Linda H. Geiseren
thesis.degree.departmentEcology.en
thesis.degree.genreThesisen
thesis.degree.nameMSen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage162en

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
GrenonJ0812.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Copyright (c) 2002-2022, LYRASIS. All rights reserved.