Epiphytic lichens, nitrogen deposition and climate in the US northern Rocky Mountain states
dc.contributor.advisor | Chairperson, Graduate Committee: David Roberts | en |
dc.contributor.author | Grenon, Jill Ann | en |
dc.contributor.other | David W. Roberts, Mark E. Fenn, Linda H. Geiser and Sarah Jovan were co-authors of the article, 'Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River range, WY' in the journal 'Journal of air & waste management association' which is contained within this thesis. | en |
dc.contributor.other | David W. Roberts and Linda H. Geiser were co-authors of the article, 'Epiphytic lichen indication of nitrogen deposition and climate conditions in the Northern Rocky Mountains' in the journal 'Environmental pollution' which is contained within this thesis. | en |
dc.contributor.other | David W. Roberts and Linda H. Geiser were co-authors of the article, 'Climate patterns as indicated by epiphytic lichen communities: a forest inventory and analysis indicator model for the NW interior mountains, USA' in the journal 'Government technical report' which is contained within this thesis. | en |
dc.date.accessioned | 2013-06-25T18:37:17Z | |
dc.date.available | 2013-06-25T18:37:17Z | |
dc.date.issued | 2012 | en |
dc.description.abstract | Forested ecosystems in the NW Interior Mountains (NWIM) of the United States are jeopardized by degrading air quality and changes in climate regimes. Monitoring and tracking changes in air quality and climate through instrumentation alone can be an expensive and challenging task. Biomonitors offer a cost-effective way to maximize monitoring resolution. This thesis explored the utility of lichens as biomonitors across three sections of the NWIM. First, in the Wind River Range, WY, nitrogen concentrations (%N) in lichen thalli were calibrated with measurements of canopy throughfall N deposition. A strong correlation verified % N as a useful metric to estimate N deposition. Nitrogen deposition in the Boulder drainage, closest in proximity to large natural gas drilling operations, was clearly elevated above estimated background conditions and measurements from other drainages. Degraded lichen communities were observed at deposition levels of 4.0 kg N ha -¹year -¹. The second study used lichen community composition, elemental analysis, and lichen functional groups to analyze the importance of nitrogen deposition and climate on lichen communities along the northern Rocky Mountains. Temperature and relative humidity were the most important climatic influences on community structure. A nitrogen pollution signal was independent of climate. The relationship between % N in lichen thalli and throughfall N (study 1) was used to estimate N deposition along the northern Rocky Mountains. Eutroph (N-tolerant) and oligotroph (N-sensitive) functional group indices were correlated with both N deposition and climate. Elevated N deposition (twice background conditions) was most notable around Bozeman, MT and Pinedale, WY. The final study stratified plots across the NWIM by latitude and longitude and found precipitation, dew point, and temperature were important variables to lichen community composition. Eutroph and oligotroph distributions were partially accounted for by climate; unfortunately no N data were available for comparison to lichen communities. The models created can be utilized for monitoring changes in lichen communities over time and to predict N deposition and climate conditions for new plots. Additionally, these models can be used to address management and conservation questions related to individual lichen species, lichen communities, forest health, air quality, and climate conditions. | en |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/1385 | en |
dc.language.iso | en | en |
dc.publisher | Montana State University - Bozeman, College of Letters & Science | en |
dc.rights.holder | Copyright 2012 by Jill Ann Grenon | en |
dc.subject.lcsh | Environmental monitoring | en |
dc.subject.lcsh | Lichen communities | en |
dc.subject.lcsh | Climatic changes | en |
dc.subject.lcsh | Air quality | en |
dc.subject.lcsh | Forests and forestry | en |
dc.title | Epiphytic lichens, nitrogen deposition and climate in the US northern Rocky Mountain states | en |
dc.type | Thesis | en |
thesis.catalog.ckey | 1932843 | en |
thesis.degree.committeemembers | Members, Graduate Committee: Catherine A. Zabinski; Linda H. Geiser | en |
thesis.degree.department | Ecology. | en |
thesis.degree.genre | Thesis | en |
thesis.degree.name | MS | en |
thesis.format.extentfirstpage | 1 | en |
thesis.format.extentlastpage | 162 | en |
Files
Original bundle
1 - 1 of 1