Sintering in ceramics and solid oxide fuel cells

dc.contributor.advisorChairperson, Graduate Committee: Stephen W. Sofieen
dc.contributor.authorHunt, Clay Daleen
dc.contributor.otherDavid Driscoll, Adam Weisenstein and Stephen W. Sofie were co-authors of the article, 'Nickel nitrate and molybdenum oxide as a yttria-stabilized zirconia sintering aid' in the journal 'Processing, properties, and design of advanced ceramics and composites' which is contained within this thesis.en
dc.contributor.otherMarley Zachariasen, David Driscoll and Stephen W. Sofie were co-authors of the article, 'Current degradation rate quantification of solid oxide fuel cells with and without aluminum titanate' which is contained within this thesis.en
dc.contributor.otherDavid Driscoll and Stephen W. Sofie were co-authors of the article, 'Constant rate of heating definition of the undefined function of density of the Wang and Raj equation for 8YSZ' which is contained within this thesis.en
dc.contributor.otherDavid Driscoll and Stephen W. Sofie were co-authors of the article, 'Constant rate of heating definition of undefined density function for 8YSZ with a sintering aid' which is contained within this thesis.en
dc.contributor.otherDavid Driscoll and Stephen W. Sofie were co-authors of the article, 'Constant temperature definition of the undefined density function for 8YSZ' which is contained within this thesis.en
dc.contributor.otherDavid Driscoll and Stephen W. Sofie were co-authors of the article, 'Constant temperature definition of the undefined density function of 8YSZ with a sintering aid' which is contained within this thesis.en
dc.date.accessioned2018-06-28T15:32:55Z
dc.date.available2018-06-28T15:32:55Z
dc.date.issued2017en
dc.description.abstractNature's propensity to minimize energy, and the change in energy with respect to position, drives diffusion. Diffusion is a means by which mass transport resulting in the bonding of the particles of a powder compact can be achieved without melting. This phenomenon occurs in powdered materials near their melting temperature, and is referred to as 'sintering'. Because of the extreme melting temperature of some materials, sintering might be the only practical means of processing. The complexity and subtlety of sintering ceramics motivated the evaluation of empirical data and existing sintering models. This project examined polycrystalline cubic-zirconia sintering with and without transition-metal oxide additions that change sintering behavior. This study was undertaken to determine how sintering aids affect the driving force, and activation energy, the energy barrier that must be overcome in order for an atom or ion to diffuse, of the densification occurring during sintering. Examination of commercially-available cubic-zirconia powder sintering behavior was undertaken with dilatometry, which allows monitoring of the length change a material undergoes as it sinters, and with scanning electron microscopy, which facilitates the study of sintered-sample microstructure. MATLAB algorithms quantifying sintering results were developed. Results from this work include proposed definitions of a 26-year-old undefined function of density factor in a well-accepted mathematical model of sintering. These findings suggest activation energy is not changing with density, as is suggested by recent published results. The first numerical integration of the studied sintering model has been performed. With these tools, a measure of the activation energy of densification of cubic-zirconia with and without the addition of cobalt-oxide as a sintering aid has been performed. The resulting MATLAB algorithms can be used in future sintering studies. It is concluded that sintering enhancement achieved with cobalt-oxide addition comes from reduction in activation energy of densification of cubic-zirconia. Further, it is suggested that the activation energy of densification does not change with material density. This conclusion is supported by the sensitivity of the numerical integration of the aforementioned sintering model to changes in activation energy.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/14072en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.rights.holderCopyright 2017 by Clay Dale Hunten
dc.subject.lcshSinteringen
dc.subject.lcshCeramicsen
dc.subject.lcshSolid oxide fuel cellsen
dc.subject.lcshAlgorithmsen
dc.titleSintering in ceramics and solid oxide fuel cellsen
dc.typeDissertationen
mus.data.thumbpage36en
thesis.degree.committeemembersMembers, Graduate Committee: Mark Owkes; Roberta Amendola; Sarah L. Codd.en
thesis.degree.departmentMechanical & Industrial Engineering.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage360en

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HuntC1217.pdf
Size:
4.13 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
826 B
Format:
Plain Text
Description: