Investigation of crack arrest fracture toughness of laboratory-manufactured polycrystalline ice

dc.contributor.advisorChairperson, Graduate Committee: Edward E. Adamsen
dc.contributor.authorAlcorn, Derek Westen
dc.date.accessioned2022-01-25T03:59:22Z
dc.date.available2022-01-25T03:59:22Z
dc.date.issued2021en
dc.description.abstractApproximately 50% of ice mass loss from ice sheets is due to icebergs breaking off in a process called calving. Icebergs are created through the incremental growth of crevasses, which are large fractures in the ice. Crevasse propagation and iceberg calving predictions within ice sheet models conflict with direct observations of crevasse processes. Current ice sheet models assume that a crevasse will propagate until it reaches a depth where the stress intensity factor at the crack tip is less than that of crack initiation, however, this is likely an oversimplification as current models over estimate crevasse depth. A more robust model would also account for the crack arrest fracture toughness, a measure of how well a material can stop an already propagating crack. Here, we calculate crack arrest fracture toughness for samples of laboratory-manufactured polycrystalline ice. These samples were created using a radial freezing technique with a reproducible grain size distribution of 0.95 mm + or - 0.28 mm analyzed by cross-polarized light. Specimens were notched and brought to failure via a short-rod fracture toughness test at controlled temperatures and a constant displacement rate in a commercial mechanical testing apparatus with an environmental chamber. The presented data agrees with short-rod fracture toughness data collected from ice cores at the Filchner- Ronne Ice Shelf in Antarctica, demonstrating quasi-stable crack growth behavior. Results show the crack arrest fracture toughness of laboratory-manufactured polycrystalline ice is approximately 25 - 50% of fracture toughness. Using the crack arrest fracture toughness determined in this study would further increase modeled crevasse depth, indicating more analysis is required. Future studies can incorporate these data to more accurately determine crevasse penetration depth and improve iceberg calving predictions within ice sheet models.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/16234en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.rights.holderCopyright 2021 by Derek West Alcornen
dc.subject.lcshIcebergsen
dc.subject.lcshIceen
dc.subject.lcshFracture mechanicsen
dc.subject.lcshForecastingen
dc.subject.lcshMathematical modelsen
dc.titleInvestigation of crack arrest fracture toughness of laboratory-manufactured polycrystalline iceen
dc.typeThesisen
mus.data.thumbpage28en
thesis.degree.committeemembersMembers, Graduate Committee: Kevin Hammonds; Kirsten Mattesonen
thesis.degree.departmentCivil Engineering.en
thesis.degree.genreThesisen
thesis.degree.nameMSen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage131en

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
alcorn-investigation-2021.pdf
Size:
38.63 MB
Format:
Adobe Portable Document Format
Description:
Investigation of crack arrest fracture toughness of laboratory-manufactured polycrystalline ice (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Plain Text
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.