Evolution of a streamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory
dc.contributor.author | Liewer, P. C. | |
dc.contributor.author | Qiu, J. | |
dc.contributor.author | Vourlidas, A. | |
dc.contributor.author | Hall, J. R. | |
dc.contributor.author | Penteado, P. | |
dc.date.accessioned | 2022-09-06T19:45:46Z | |
dc.date.available | 2022-09-06T19:45:46Z | |
dc.date.issued | 2021-06 | |
dc.description | The original publication is available at www.doi.org/10.1051/0004-6361/202039641. | en_US |
dc.description.abstract | Context. On 26–27 January 2020, the Wide-field Imager for Solar Probe on Parker Solar Probe (PSP) observed a coronal mass ejection (CME) from a distance of approximately 30 R⊙ as it passed through the instrument’s 95° field-of-view, providing an unprecedented view of the flux rope morphology of the CME’s internal structure. The same CME was seen by Solar Terrestrial Relations Observatory-Ahead (STEREO-A), beginning on 25 January. Aims. Our goal is to understand the origin and determine the trajectory of this CME. Methods. We analyzed data from three well-placed spacecrafts: PSP, STEREO-A, and Solar Dynamics Observatory (SDO). The CME trajectory was determined using a tracking-and-fitting technique and verified using simultaneous images of the CME propagation from STEREO-A. The fortuitous alignment with STEREO-A also provided views of coronal activity leading up to the eruption. Observations from SDO, in conjunction with potential magnetic field models of the corona, were used to analyze the coronal magnetic evolution for the three days leading up to the flux rope ejection from the corona on 25 January. Results. We found that the 25 January CME is likely the end result of a slow magnetic flux rope eruption that began on 23 January and was observed by STEREO-A/Extreme Ultraviolet Imager. The analysis of these observations suggest that the flux rope was apparently constrained in the corona for more than a day before its final ejection on 25 January. STEREO-A/COR2 observations of swelling and brightening of the overlying streamer for several hours prior to eruption on 25 January led us to classify this as a streamer-blowout CME. The analysis of the SDO data suggests that restructuring of the coronal magnetic fields caused by an emerging active region led to the final ejection of the flux rope. | en_US |
dc.identifier.citation | Liewer, P. C., Qiu, J., Vourlidas, A., Hall, J. R., & Penteado, P. (2021). Evolution of a streamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory. Astronomy & Astrophysics, 650, A32. | en_US |
dc.identifier.issn | 0004-6361 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/17073 | |
dc.language.iso | en_US | en_US |
dc.publisher | EDP Sciences | en_US |
dc.rights | copyright EDP sciences 2021 | en_US |
dc.rights.uri | https://web.archive.org/web/20200106222732/https://www.edpsciences.org/en/authors/copyright-and-licensing | en_US |
dc.subject | CME solar probe | en_US |
dc.title | Evolution of a streamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 1 | en_US |
mus.citation.extentlastpage | 12 | en_US |
mus.citation.journaltitle | Astronomy & Astrophysics | en_US |
mus.citation.volume | 650 | en_US |
mus.data.thumbpage | 6 | en_US |
mus.identifier.doi | 10.1051/0004-6361/202039641 | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Physics. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |