Planetary boundary layer height retrieval from a diode-laser-based high spectral resolution lidar

dc.contributor.authorColberg, Luke
dc.contributor.authorCruikshank, Owen
dc.contributor.authorRepasky, Kevin S.
dc.date.accessioned2023-02-23T19:21:32Z
dc.date.available2023-02-23T19:21:32Z
dc.date.issued2022-04
dc.description.abstractThe planetary boundary layer height (PBLH) is an essential parameter for weather forecasting and climate modeling. The primary methods for obtaining the PBLH include radiosonde measurements of atmospheric parameters and lidar measurements, which track aerosol layers in the lower atmosphere. Radiosondes provide the parameters to determine the PBLH but cannot monitor changes over a diurnal cycle. Lidar instruments can track the temporal variability of the PBLH and account for spatial variability when operated in a network configuration. The networkable micropulse DIAL (MPD) instruments for thermodynamic profiling are based on diode-laser technology that is eye-safe and cost-effective and has demonstrated long-term autonomous operation. We present a retrieval algorithm for determining the PBLH from the quantitative aerosol profiling capability of the high spectral resolution channel of the MPD. The PBLH is determined using a Haar wavelet transform (HWT) method that tracks aerosol layers in the lower atmosphere. The PBLH from the lidar is compared with the PBLH determined from potential temperature profiles from radiosondes. In many cases, good agreement among the PBLH retrievals was seen. However, the radiosonde retrieval often missed the lowest inversion layer when several layers were present, while the HWT could track the lowest layer.en_US
dc.identifier.citationLuke Colberg, Owen Cruikshank, and Kevin S. Repasky "Planetary boundary layer height retrieval from a diode-laser-based high spectral resolution lidar," Journal of Applied Remote Sensing 16(2), 024507 (20 April 2022). https://doi.org/10.1117/1.JRS.16.024507en_US
dc.identifier.issn1931-3195
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17731
dc.language.isoen_USen_US
dc.publisherSPIE-Intl Soc Optical Engen_US
dc.rightscc-byen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectplanetary boundary layeren_US
dc.subjectatmospheric boundary layeren_US
dc.subjectlidaren_US
dc.subjecthigh spectral resolution lidaren_US
dc.subjectremote sensingen_US
dc.subjectatmospheric sensingen_US
dc.titlePlanetary boundary layer height retrieval from a diode-laser-based high spectral resolution lidaren_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage13en_US
mus.citation.issue02en_US
mus.citation.journaltitleJournal of Applied Remote Sensingen_US
mus.citation.volume16en_US
mus.identifier.doi10.1117/1.JRS.16.024507en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentElectrical & Computer Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
colberg-spectral-2022.pdf
Size:
3.19 MB
Format:
Adobe Portable Document Format
Description:
planetary boundary

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.