Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Montana State University - Bozeman, College of Letters & Science
Abstract
Solar flares remain a subject of intense study in the solar physics community. These huge releases of energy on the Sun have direct consequences for humans on Earth and in space. The processes that impart tremendous amounts of energy are not well understood. In order to test theoretical models of flare formation and evolution, state of the art, numerical codes must be created that can accurately simulate the wide range of electromagnetic radiation emitted by flares. A direct comparison of simulated radiation to increasingly detailed observations will allow scientists to test the validity of theoretical models. To accomplish this task, numerical codes were developed that can simulate both the thermal and nonthermal components of a flaring plasma, their interactions, and their emissions. The HYLOOP code combines a hydrodynamic equation solver with a nonthermal particle tracking code in order to simulate the thermal and nonthermal aspects of a flare. A solar flare was simulated using this new code with a static atmosphere and with a dynamic atmosphere, to illustrate the importance of considering hydrodynamic effects on nonthermal beam evolution. The importance of density gradients in the evolution of nonthermal electron beams was investigated by studying their effects in isolation. The importance of the initial pitch-angle cosine distribution to flare dynamics was investigated. Emission in XRT filters were calculated and analyzed to see if there were soft X-ray signatures that could give clues to the nonthermal particle distributions. Finally the HXR source motions that appeared in the simulations were compared to real observations of this phenomena.