The Impact of Weight Matrices on Parameter Estimation & Inference: A Case Study of Binary Response Using Land Use Data

dc.contributor.authorWang, Yiyi
dc.contributor.authorKockelman, Kara M.
dc.contributor.authorWang, Xiaokun (Cara)
dc.date.accessioned2016-02-10T20:27:54Z
dc.date.available2016-02-10T20:27:54Z
dc.date.issued2013-11
dc.description.abstractThis paper develops two new models and evaluates the impact of using different weight matrices on parameter estimates and inference in three distinct spatial specifications for discrete response. These specifications rely on a conventional, sparse, inverse-distance weight matrix for a spatial auto-regressive probit (SARP), a spatial autoregressive approach where the weight matrix includes an endogenous distance-decay parameter (SARPα), and a matrix exponential spatial specification for probit (MESSP). These are applied in a binary choice setting using both simulated data and parcel-level land-use data. Parameters of all models are estimated using Bayesian methods. In simulated tests, adding a distance-decay parameter term to the spatial weight matrix improved the quality of estimation and inference, as reflected by a lower deviance information criteriaon (DIC) value, but the added sampling loop required to estimate the distance-decay parameter substantially increased computing times. In contrast, the MESSP model’s obvious advantage is its fast computing time, thanks to elimination of a log-determinant calculation for the weight matrix. In the model tests using actual land-use data, the MESSP approach emerged as the clear winner, in terms of fit and computing times. Results from all three models offer consistent interpretation of parameter estimates, with locations farther away from the regional central business district (CBD) and closer to roadways being more prone to (mostly residential) development (as expected). Again, the MESSP model offered the greatest computing-time savings benefits, but all three specifications yielded similar marginal effects estimates, showing how a focus on the spatial interactions and net (direct plus indirect) effects across observational units is more important than a focus on slope-parameter estimates when properly analyzing spatial data.en_US
dc.description.sponsorshipNational Science Foundation for Award SES-0818066,en_US
dc.identifier.citationWang, Y., Kockelman, K., & Wang, X. (2013) The Impact of Weight Matrices on Parameter Estimation & Inference: A Case Study of Binary Response Using Land Use Data. Presented at the 58th North American Regional Science Association International (RSAI) Conference, Miami, Florida. Journal of Transportation and Land Use 6 (3), November 2013.en_US
dc.identifier.issn1938-7849
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/9554
dc.titleThe Impact of Weight Matrices on Parameter Estimation & Inference: A Case Study of Binary Response Using Land Use Dataen_US
dc.typeArticleen_US
mus.citation.conference58th North American Regional Science Association International (RSAI) Conferenceen_US
mus.citation.issue3en_US
mus.citation.journaltitleJournal of Transportation and Land Useen_US
mus.citation.volume6en_US
mus.data.thumbpage6en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.5198/jtlu.v6i3.351en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCivil Engineering.en_US
mus.relation.researchgroupWestern Transportation Institute (WTI).en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
YWang_JTLU_2013.pdf
Size:
918.98 KB
Format:
Adobe Portable Document Format
Description:
The Impact of Weight Matrices on Parameter Estimation & Inference: A Case Study of Binary Response Using Land Use Data (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.