Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB
dc.contributor.author | Brindle, Eric R. | |
dc.contributor.author | Miller, David A. | |
dc.contributor.author | Stewart, Philip S. | |
dc.date.accessioned | 2017-02-07T18:29:02Z | |
dc.date.available | 2017-02-07T18:29:02Z | |
dc.date.issued | 2011-07 | |
dc.description.abstract | The force-deflection and removal characteristics of bacterial biofilm were measured by two different techniques before and after chemical, or enzymatic, treatment. The first technique involved time lapse imaging of a biofilm grown in a capillary flow cell and subjected to a brief shear stress challenge imparted through increased fluid flow. Biofilm removal was determined by calculating the reduction in biofilm area from quantitative analysis of transmission images. The second technique was based on microindentation using an atomic force microscope. In both cases, biofilms formed by Staphylococcus epidermidis were exposed to buffer (untreated control), urea, chlorhexidine, iron chloride, or DispersinB.In control experiments, the biofilm exhibited force-deflection responses that were similar before and after the same treatment. The biofilm structure was stable during the post-treatment shear challenge (1% loss). Biofilms treated with chlorhexidine became less deformable after treatment and no increase in biomass removal was seen during the post-treatment shear challenge (2% loss). In contrast, biofilms treated with urea or DispersinB became more deformable and exhibited significant biofilm loss during the post-treatment flow challenge (71% and 40%, respectively). During the treatment soak phase, biofilms exposed to urea swelled. Biofilms exposed to iron chloride showed little difference from the control other than slight contraction during the treatment soak. These observations suggest the following interpretations: (1) chemical or enzymatic treatments, including those that are not frankly antimicrobial, can alter the cohesion of bacterial biofilm; (2) biocidal treatments (e.g., chlorhexidine) do not necessarily weaken the biofilm; and (3) biofilm removal following treatment with agents that make the biofilm more deformable (e.g., urea, DispersinB) depend on interaction between the moving fluid and the biofilm structure. Measurements such as those reported here open the door to development of new technologies for controlling detrimental biofilms by targeting biofilm cohesion rather than killing microorganisms. | en_US |
dc.identifier.citation | Brindle ER, Miller DA, Stewart PS, "Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB," Biotechnology and Bioengineering 2011 108(12):2968-2977 | en_US |
dc.identifier.issn | 0006-3592 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/12579 | |
dc.title | Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 2968 | en_US |
mus.citation.extentlastpage | 2977 | en_US |
mus.citation.issue | 12 | en_US |
mus.citation.journaltitle | Biotechnology and Bioengineering | en_US |
mus.citation.volume | 108 | en_US |
mus.contributor.orcid | Stewart, Philip S.|0000-0001-7773-8570 | en_US |
mus.data.thumbpage | 6 | en_US |
mus.identifier.category | Chemical & Material Sciences | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1002/bit.23245 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemical Engineering. | en_US |
mus.relation.department | Chemistry & Biochemistry. | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 11-028_Hydrodynamic_deformation_and_.pdf
- Size:
- 743.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: