Rational design of complex phenotype via network models
Date
2021-07
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Abstract
We demonstrate a modeling and computational framework that allows for rapid screening of thousands of potential network designs for particular dynamic behavior. To illustrate this capability we consider the problem of hysteresis, a prerequisite for construction of robust bistable switches and hence a cornerstone for construction of more complex synthetic circuits. We evaluate and rank most three node networks according to their ability to robustly exhibit hysteresis where robustness is measured with respect to parameters over multiple dynamic phenotypes. Focusing on the highest ranked networks, we demonstrate how additional robustness and design constraints can be applied. We compare our results to more traditional methods based on specific parameterization of ordinary differential equation models and demonstrate a strong qualitative match at a small fraction of the computational cost.
Description
Keywords
rational design, complex phenotype, netowrk models
Citation
Gameiro M, Gedeon T, Kepley S, Mischaikow K (2021) Rational design of complex phenotype via network models. PLoS Comput Biol 17(7): e1009189. https://doi.org/10.1371/journal. pcbi.1009189
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as cc-by