Highly-automated, high-throughput replication of yeast-based logic circuit design assessments
Date
2022-02
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Abstract
We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency’s Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned.
Description
Keywords
replication, high-throughput experimentation, yeast, CRISPR, combinatory logic
Citation
Goldman, Robert P., Robert Moseley, Nicholas Roehner, Breschine Cummins, Justin D. Vrana, Katie J. Clowers, Daniel Bryce et al. "Highly-automated, high-throughput replication of yeast-based logic circuit design assessments." Synthetic Biology 7, no. 1 (2022): ysac018.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as cc-by