Mathematical modeling and performance evaluation of soliton-based and non-soliton all-optical WDM systems

dc.contributor.advisorChairperson, Graduate Committee: Richard Wolffen
dc.contributor.authorKota Pavan, Sriharshaen
dc.date.accessioned2013-06-25T18:43:15Z
dc.date.available2013-06-25T18:43:15Z
dc.date.issued2009en
dc.description.abstractThis thesis presents a performance evaluation of soliton and non-soliton based all-optical Wavelength Division Multiplexed (WDM) networks assuming the existing infrastructure (e.g., fiber and other physical layer components). The performance evaluation is carried out by a conveniently defined Quality (Q) factor, which is a measure of the signal to noise ratio, and indirectly, the bit error rate (BER) of the system. A solution to the Nonlinear Schrödinger Equation (NLSE), describing the propagation of light inside a fiber with linear and nonlinear impairments is found mathematically from which the Q factor is calculated for both solitons and non-solitons. We also compare the accuracy of the Regular Perturbation (RP) based method for analytically calculating the Q factor, with that of the standard Split Step Fourier (SSF) method. Results show that the RP based method gives more accurate results than the widely used SSF method for reasonably low power levels. Results also show that the soliton based systems perform much better than the non-soliton systems for typical system parameters in the existing infrastructure for bit rates of up to 10Gbps per channel. In this thesis, we present a sample WDM based optical network with mesh topology and show that the end-to-end Q factor of a soliton system is higher than that of non-soliton systems.en
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/1667en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.rights.holderCopyright 2009 by Sriharsha Kota Pavanen
dc.subject.lcshSolitonsen
dc.subject.lcshWavelength division multiplexingen
dc.subject.lcshMathematical modelsen
dc.titleMathematical modeling and performance evaluation of soliton-based and non-soliton all-optical WDM systemsen
dc.typeThesisen
thesis.catalog.ckey1404362en
thesis.degree.committeemembersMembers, Graduate Committee: Brendan Mumey; Robert C. Maher; Kevin S. Repasky; Andy Olsonen
thesis.degree.departmentElectrical & Computer Engineering.en
thesis.degree.genreThesisen
thesis.degree.nameMSen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage79en

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kota_PavanS0509.pdf
Size:
663.63 KB
Format:
Adobe Portable Document Format
Copyright (c) 2002-2022, LYRASIS. All rights reserved.