Global dynamics for switching systems and their extensions by linear differential equations
Date
2018-11
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Description
Keywords
Citation
Huttinga, Zane , Bree Cummins, Tomáš Gedeon, and Konstantin Mischaikow. "Global dynamics for switching systems and their extensions by linear differential equations." Physica D: Nonlinear Phenomena, 367 (March 2018): 19-37. DOI: 10.1016/j.physd.2017.11.003.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).