Optimized Inorganic Carbon Regime for Enhanced Growth and Lipid Accumulation in Chlorella Vulgaris

dc.contributor.authorLohman, Egan J.
dc.contributor.authorGardner, Robert D.
dc.contributor.authorPedersen, Todd C.
dc.contributor.authorPeyton, Brent M.
dc.contributor.authorCooksey, Keith E.
dc.contributor.authorGerlach, Robin
dc.date.accessioned2015-06-23T20:36:34Z
dc.date.available2015-06-23T20:36:34Z
dc.date.issued2015-06
dc.description.abstractBackground Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO 2 . Life cycle analyses have concluded that costs associated with supplying CO 2 to algal cultures are significant contributors to the overall energy consumption. Results A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO 3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO 2 (v/v). Once cultures reached the desired cell densities, which can be “fine-tuned” based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO 3 . This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO 2 (v/v); further, biomass productivity (g L −1 day −1 ) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass −1 ) under the optimized conditions; biodiesel productivity (g FAME L −1 day −1 ) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO 3 induced the highest TAG accumulation (% w/w), whereas Na 2 CO 3 did not induce significant TAG accumulation. NH 4 HCO 3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO 3 ∙Na 2 CO 3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. Conclusions The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in cultures of C. vulgaris, when compared to traditional culturing strategies, which rely on continuously sparging algal cultures with elevated concentrations of CO 2(g) . This work presents a two-phased, improved photoautotrophic growth and lipid accumulation approach, which may result in an overall increase in algal biofuel productivity.en_US
dc.identifier.citationLohman, Egan J, Robert D Gardner, Todd Pedersen, Brent M Peyton, Keith E Cooksey, and Robin Gerlach. “Optimized Inorganic Carbon Regime for Enhanced Growth and Lipid Accumulation in Chlorella Vulgaris.� Biotechnology for Biofuels 8, no. 1 (June 11, 2015). doi:10.1186/s13068-015-0265-4.en_US
dc.identifier.issn1754-6834
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/9125
dc.titleOptimized Inorganic Carbon Regime for Enhanced Growth and Lipid Accumulation in Chlorella Vulgarisen_US
dc.typeArticleen_US
mus.citation.issue1en_US
mus.citation.journaltitleBiotechnology for Biofuelsen_US
mus.citation.volume8en_US
mus.contributor.orcidPeyton, Brent M.|0000-0003-0033-0651en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.doi10.1186/s13068-015-0265-4en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gerlach_BforB_6_2015_A1b.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Optimized Inorganic Carbon Regime for Enhanced Growth and Lipid Accumulation in Chlorella Vulgaris (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.