Predicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learning

Thumbnail Image

Date

2013-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Complex dynamical systems, from those appearing in physiology and ecology to Earth system modelling, often experience critical transitions in their behaviour due to potentially minute changes in their parameters. While the focus of much recent work, predicting such bifurcations is still notoriously difficult. We propose an active learning approach to the classification of parameter space of dynamical systems for which the codimension of bifurcations is high. Using elementary notions regarding the dynamics, in combination with the nearest-neighbour algorithm and Conley index theory to classify the dynamics at a predefined scale, we are able to predict with high accuracy the boundaries between regions in parameter space that produce critical transitions.

Description

Keywords

Citation

K. Spendlove, J. Berwald and T. Gedeon, “Predicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learning”, Mathematical and Computer Modelling of Dynamical Systems, 19(6), 557-574, (2013), DOI:10.1080/13873954.2013.801866.

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.