Improving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentification

dc.contributor.authorBanner, Katharine M.
dc.contributor.authorIrvine, Kathryn M.
dc.contributor.authorRodhouse, Thomas J.
dc.contributor.authorWright, Wilson J.
dc.contributor.authorRodriguez, Rogelio M.
dc.contributor.authorLitt, Andrea R.
dc.date.accessioned2018-11-19T17:58:39Z
dc.date.available2018-11-19T17:58:39Z
dc.date.issued2018-06
dc.description.abstractAcoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non-detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false-positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species-specific parameter values, and desired precision. For transferability, a fully documented r package, OCacoustic, for implementing a false-positive occupancy model is provided. Practitioners can apply OCacoustic to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false-positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.en_US
dc.identifier.citationBanner, Katharine M. , Kathryn M. Irvine, Thomas J. Rodhouse, Wilson J. Wright, Rogelio M. Rodriguez, and Andrea R. Litt. "Improving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentification." Ecology & Evolution 8, no. 12 (June 2018): 6144-6156. DOI:10.1002/ece3.4162.en_US
dc.identifier.issn2045-7758
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/15020
dc.language.isoenen_US
dc.rightsCCBY, This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcodeen_US
dc.titleImproving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentificationen_US
dc.typeArticleen_US
mus.citation.extentfirstpage6144en_US
mus.citation.extentlastpage6156en_US
mus.citation.issue12en_US
mus.citation.journaltitleEcology & Evolutionen_US
mus.citation.volume8en_US
mus.contributor.orcidBanner, Katharine M.|0000-0002-7103-0042en_US
mus.data.thumbpage8en_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1002/ece3.4162en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentEcology.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Banner_EE_2018.pdf
Size:
773.64 KB
Format:
Adobe Portable Document Format
Description:
Improving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentification (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.