Striking changes in tea metabolites due to elevational effects

Abstract

Climate effects on crop quality at the molecular level are not well-understood. Gas and liquid chromatography–mass spectrometry were used to measure changes of hundreds of compounds in tea at different elevations in Yunnan Province, China. Some increased in concentration while others decreased by 100’s of percent. Orthogonal projection to latent structures-discriminant analysis revealed compounds exhibiting analgesic, antianxiety, antibacterial, anticancer, antidepressant, antifungal, anti-inflammatory, antioxidant, anti-stress, and cardioprotective properties statistically (p = 0.003) differentiated high from low elevation tea. Also, sweet, floral, honey-like notes were higher in concentration in the former while the latter displayed grassy, hay-like aroma. In addition, multivariate analysis of variance showed low elevation tea had statistically (p = 0.0062) higher concentrations of caffeine, epicatechin gallate, gallocatechin, and catechin; all bitter compounds. Although volatiles represent a small fraction of the total mass, this is the first comprehensive report illustrating how normal variations in temperature, 5 °C, due to elevational effects impact tea quality.

Description

Keywords

Citation

Kfoury, Nicole, Joshua Morimoto, Amanda Kern, Eric R. Scott, Colin M. Orians, Selena Ahmed, Timothy Griffin, Sean B. Cash, John Richard Stepp, Dayuan Xue, Chunlin Long, and Albert Jr. Robbat. "Striking changes in tea metabolites due to elevational effects." Food Chemistry 264(October 2018): 334-341. DOI:10.1016/j.foodchem.2018.05.040.

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.