Mechanistic Origin of Ligand Effects on Exhaustive Functionalization During Pd-Catalyzed Cross-Coupling of Dihaloarenes
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Abstract
We describe a detailed investigation into why bulky ligands─those that enable catalysis at “12e–” Pd0─tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e– PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e– PdL(L’) by a second incoming ligand L’. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e– PdL(L’) from the monocross-coupled product. This work has practical implications for optimizing the selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that the precatalyst structure can also impact selectivity.
Description
Citation
Larson, N. G., Norman, J. P., & Neufeldt, S. R. (2024). Mechanistic Origin of Ligand Effects on Exhaustive Functionalization During Pd-Catalyzed Cross-Coupling of Dihaloarenes. ACS Catalysis, 14(9), 7127-7135.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Copyright American Chemical Society 2024