Reconstructing the age, provenance, and thermal history of the basal Great Valley forearc basin, northern California

Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

Forearc basins are important sediment archives of Earth's geologic history, preserving a record of the erosional history of magmatic arcs, subduction zone dynamics, and climatic changes over millions of years. However, questions remain about the early developmental stages of a forearc basin, including the relationship between a forearc basin and its underlying basement, and thermal histories of exhumed, ancient forearc basins that preserve extensive sedimentary successions. This dissertation examines the basement underlying the Great Valley Forearc basin, the upper Coast Range Ophiolite and ophiolitic breccia, and Great Valley Group strata using sedimentology, sandstone modal petrography, geochronology, thermochronology, and cathodoluminescence, photoluminescence, and Raman spectroscopy. Chapter 1 evaluates Upper Jurassic-Lower Cretaceous strata and underlying Coast Range Ophiolite in the northwestern Sacramento basin to constrain the timing of initial deposition within the Great Valley Forearc, identify potential provenances, and provide a tectonic model for the early development of the forearc. Detrital zircon and petrographic data from a localized breccia interval directly underlying basal forearc strata indicate provenance from the Coast Range Ophiolite and North American margin, with formation ongoing by ~151 Ma. Detrital zircon data from Upper Jurassic-Lower Cretaceous strata yield maximum depositional ages between ~165-141 Ma and are interpreted to reflect diachronous deposition in segmented depocenters during the early development of the forearc that was proximal to the Sierra Nevada-Klamath magmatic. Chapter 2 utilizes apatite and zircon (U-Th)/He thermochronology to constrain the thermal history of the Sacramento basin, which includes documenting minimum burial temperatures for the western outcrop belt to have exceeded 85°C with cooling in the Cenozoic, whereas the subsurface strata of the central-eastern parts of the basin reached ~180-200°C with cooling in the middle-Late Cretaceous and Cenozoic. Chapter 3 examines gabbro and granitic basement rock underlying the Great Valley Forearc, along with several zircon U-Pb age standards, to demonstrate that radiation damage in zircon can non-destructively be estimated using cathodoluminescence spectroscopy, a complementary technique to photoluminescence and Raman spectroscopy. This dissertation highlights the significance of studying forearc basins along with their accompanying basement component, as the linked relationship is crucial for understanding how forearc basins evolve.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.