Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China
dc.contributor.author | Ahmed, Selena | |
dc.contributor.author | Stepp, John Richard | |
dc.contributor.author | Orians, Colin M. | |
dc.contributor.author | Griffin, Timothy S. | |
dc.contributor.author | Matyas, Corene | |
dc.contributor.author | Robbat, Albert Jr. | |
dc.contributor.author | Cash, Sean | |
dc.contributor.author | Xue, Dayuan | |
dc.contributor.author | Long, Chunlin | |
dc.contributor.author | Unachukwu, Uchenna J. | |
dc.contributor.author | Buckley, Sarabeth | |
dc.contributor.author | Small, David | |
dc.contributor.author | Kennelly, Edward | |
dc.date.accessioned | 2019-01-25T16:21:16Z | |
dc.date.available | 2019-01-25T16:21:16Z | |
dc.date.issued | 2014-10 | |
dc.description.abstract | Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management practices to facilitate climate adaptation for sustainable crop production. | en_US |
dc.description.sponsorship | Tufts University TEACRS Program (NIGMSIRACDA- K12GM074869); NSF REU Program at Tufts University (NSF DBI 1005082); NSF Coupled Natural Human Systems (NSF grant #BCS-1313775) | en_US |
dc.identifier.citation | Ahmed, Selena, John Richard Stepp, Colin Orians, Timothy Griffin, Corene Matyas, Albert Robbat, Sean Cash, et al. “Effects of Extreme Climate Events on Tea (Camellia Sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China.” Edited by Darren John Kriticos. PLoS ONE 9, no. 10 (October 6, 2014): e109126. doi:10.1371/journal.pone.0109126. | en_US |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/15166 | |
dc.language.iso | en | en_US |
dc.rights | CC BY: This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/legalcode | en_US |
dc.title | Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | e109126 | en_US |
mus.citation.issue | 10 | en_US |
mus.citation.journaltitle | PLoS ONE | en_US |
mus.citation.volume | 9 | en_US |
mus.contributor.orcid | Ahmed, Selena|0000-0001-5779-0697 | en_US |
mus.data.thumbpage | 9 | en_US |
mus.identifier.category | Health & Medical Sciences | en_US |
mus.identifier.category | Social Sciences | en_US |
mus.identifier.doi | 10.1371/journal.pone.0109126 | en_US |
mus.relation.college | College of Education, Health & Human Development | en_US |
mus.relation.department | Health & Human Development. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- Ahmed_PLoSONE_2017.PDF
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: