Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs
dc.contributor.author | Fernandes‐Martins, Maria C. | |
dc.contributor.author | Colman, Daniel R. | |
dc.contributor.author | Boyd, Eric S. | |
dc.date.accessioned | 2023-03-30T18:39:23Z | |
dc.date.available | 2023-03-30T18:39:23Z | |
dc.date.issued | 2023-01 | |
dc.description | This is the peer reviewed version of the following article: [Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environmental Microbiology (2023)], which has been published in final form at https://doi.org/10.1111/1462-2920.16340. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html#3. | en_US |
dc.description.abstract | The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers. | en_US |
dc.identifier.citation | Fernandes-Martins, M.C., Colman, D.R. & Boyd, E.S. (2023) Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environmental Microbiology, 1–19. Available from: https://doi. org/10.1111/1462-2920.16340 | en_US |
dc.identifier.issn | 1462-2912 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/17781 | |
dc.language.iso | en_US | en_US |
dc.publisher | Wiley | en_US |
dc.rights | copyright wiley 2023 | en_US |
dc.rights.uri | https://web.archive.org/web/20200106202133/https://onlinelibrary.wiley.com/library-info/products/price-lists | en_US |
dc.rights.uri | http://web.archive.org/web/20190530141919/https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html | en_US |
dc.subject | fluid mixing | en_US |
dc.subject | biodiversity | en_US |
dc.subject | chemosynthetic | en_US |
dc.subject | Yellowstone | en_US |
dc.subject | Yellowstone hot springs | en_US |
dc.title | Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 1 | en_US |
mus.citation.extentlastpage | 19 | en_US |
mus.citation.journaltitle | Environmental Microbiology | en_US |
mus.data.thumbpage | 4 | en_US |
mus.identifier.doi | 10.1111/1462-2920.16340 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- fernandes-martins-yellowstone-2022.pdf
- Size:
- 5.64 MB
- Format:
- Adobe Portable Document Format
- Description:
- chemosynthetic primary productivity
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: