Hydrogen Adsorption in Ultramicroporous Metal–Organic Frameworks Featuring Silent Open Metal Sites

dc.contributor.authorChiu, Nan Chieh
dc.contributor.authorCompton, Dalton
dc.contributor.authorGładysiak, Andrzej
dc.contributor.authorSimrod, Scott
dc.contributor.authorKhivantsev, Konstantin
dc.contributor.authorWoo, Tom K.
dc.contributor.authorStadie, Nicholas P.
dc.contributor.authorStylianou, Kyriakos C.
dc.date.accessioned2024-03-01T22:43:14Z
dc.date.available2024-03-01T22:43:14Z
dc.date.issued2023-11
dc.descriptionCopyright American Chemical Society 2023en_US
dc.description.abstractIn this study, we utilized an ultramicroporous metal–organic framework (MOF) named [Ni3(pzdc)2(ade)2(H2O)4]·2.18H2O (where H3pzdc represents pyrazole-3,5-dicarboxylic acid and ade represents adenine) for hydrogen (H2) adsorption. Upon activation, [Ni3(pzdc)2(ade)2] was obtained, and in situ carbon monoxide loading by transmission infrared spectroscopy revealed the generation of open Ni(II) sites. The MOF displayed a Brunauer–Emmett–Teller (BET) surface area of 160 m2/g and a pore size of 0.67 nm. Hydrogen adsorption measurements conducted on this MOF at 77 K showed a steep increase in uptake (up to 1.93 mmol/g at 0.04 bar) at low pressure, reaching a H2 uptake saturation at 2.11 mmol/g at ∼0.15 bar. The affinity of this MOF for H2 was determined to be 9.7 ± 1.0 kJ/mol. In situ H2 loading experiments supported by molecular simulations confirmed that H2 does not bind to the open Ni(II) sites of [Ni3(pzdc)2(ade)2], and the high affinity of the MOF for H2 is attributed to the interplay of pore size, shape, and functionality.en_US
dc.identifier.citationNan Chieh Chiu, Dalton Compton, Andrzej Gładysiak, Scott Simrod, Konstantin Khivantsev, Tom K. Woo, Nicholas P. Stadie, and Kyriakos C. Stylianou ACS Applied Materials & Interfaces 2023 15 (45), 52788-52794 DOI: 10.1021/acsami.3c12139en_US
dc.identifier.issn1944-8252
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/18346
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsCopyright American Chemical Society 2023en_US
dc.rights.urihttps://pubs.acs.org/page/rightslinkno.jspen_US
dc.subjectmetal−organic frameworksen_US
dc.subjectultramicroporesen_US
dc.subjecthydrogen uptakeen_US
dc.subjecthydrogen-absorbent interactionsen_US
dc.subjectsilent open metal sitesen_US
dc.titleHydrogen Adsorption in Ultramicroporous Metal–Organic Frameworks Featuring Silent Open Metal Sitesen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage7en_US
mus.citation.issue45en_US
mus.citation.journaltitleACS Applied Materials & Interfacesen_US
mus.citation.volume15en_US
mus.data.thumbpage3en_US
mus.identifier.doi10.1021/acsami.3c12139en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
chiu-hydrogen-2023.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format
Description:
hydrogen adsorption

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.