Application of PFG-NMR to study the impact of colloidal deposition on hydrodynamic dispersion in a porous medium
dc.contributor.author | Fridjonsson, E. O. | |
dc.contributor.author | Codd, Sarah L. | |
dc.contributor.author | Seymour, Joseph D. | |
dc.date.accessioned | 2016-11-28T18:32:34Z | |
dc.date.available | 2016-11-28T18:32:34Z | |
dc.date.issued | 2014-05 | |
dc.description.abstract | Colloidal particulate deposition affects the performance of industrial equipment, reverse osmosis membranes and sub-surface contaminant transport. Nuclear magnetic resonance (NMR) techniques, i.e. diffusion, diffraction and velocity imaging, are used to study the effect deposited colloidal particulate have on the fluid dynamics of water inside a model porous medium. Specially prepared oil-filled hard-sphere particles allow monitoring of particulate accumulation via NMR spectroscopy. Evidence of preferential spatial deposition is observed after the initial colloidal particulate deposition. Loss of spatial homogeneity is observed through NMR diffraction, while observations of the probability distributions of displacement (propagators) indicate the formation of back-bone type flow. This paper presents unique dynamic NMR data for the non-invasive non-destructive investigation of fluid transport in opaque porous media experiencing colloidal deposition. | en_US |
dc.identifier.citation | Fridjonsson EO, Codd SL, Seymour JD, "Application of PFG-NMR to study the impact of colloidal deposition on hydrodynamic dispersion in a porous medium," Transport in Porous Media, May 2014 103(1): 117–130 | en_US |
dc.identifier.issn | 0169-3913 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/11543 | |
dc.title | Application of PFG-NMR to study the impact of colloidal deposition on hydrodynamic dispersion in a porous medium | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 117 | en_US |
mus.citation.extentlastpage | 130 | en_US |
mus.citation.issue | 1 | en_US |
mus.citation.journaltitle | Transport in Porous Media | en_US |
mus.citation.volume | 103 | en_US |
mus.data.thumbpage | 9 | en_US |
mus.identifier.category | Chemical & Material Sciences | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1007/s11242-014-0290-y | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Environmental Engineering. | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 14-036_Application_of_PFG-NMR_to__A1b.pdf
- Size:
- 1.5 MB
- Format:
- Adobe Portable Document Format
- Description:
- Application of PFG-NMR to study the impact of colloidal deposition on hydrodynamic dispersion in a porous medium (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: