Optically activated, customizable, excitable cells
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Abstract
Genetically encoded fluorescent biosensors are powerful tools for studying complex signaling in the nervous system, and now both Ca2+ and voltage sensors are available to study the signaling behavior of entire neural circuits. There is a pressing need for improved sensors, but improving them is challenging because testing them involves a low throughput, labor-intensive processes. Our goal was to create synthetic, excitable cells that can be activated with brief pulses of blue light and serve as a medium throughput platform for screening the next generation of sensors. In this live cell system, blue light activates an adenylyl cyclase enzyme (bPAC) that increases intracellular cAMP (Stierl M et al. 2011). In turn, the cAMP opens a cAMP-gated ion channel. This produces slow, whole-cell Ca2+ transients and voltage changes. To increase the speed of these transients, we add the inwardly rectifying potassium channel Kir2.1, the bacterial voltage-gated sodium channel NAVROSD, and Connexin-43. The result is a highly reproducible, medium-throughput, live cell system that can be used to screen voltage and Ca2+ sensors.
Description
Keywords
Citation
Thomas M, Hughes TE (2020) Optically activated, customizable, excitable cells. PLoS ONE 15(12): e0229051.