Autonomous metabolomics for rapid metabolite identification in global profiling

dc.contributor.authorBenton, H. Paul
dc.contributor.authorIvanisevic, Julijana
dc.contributor.authorMahieu, N. G.
dc.contributor.authorKurczy, M. E.
dc.contributor.authorJohnson, Caroline H.
dc.contributor.authorFranco, Lauren C.
dc.contributor.authorRinehart, Duane
dc.contributor.authorValentine, E.
dc.contributor.authorGowda, H.
dc.contributor.authorUbhi, B. K.
dc.contributor.authorTautenhahn, R.
dc.contributor.authorGieschen, A.
dc.contributor.authorFields, Matthew W.
dc.contributor.authorPatti, G. J.
dc.contributor.authorSiuzdak, Gary
dc.date.accessioned2016-11-28T17:13:01Z
dc.date.available2016-11-28T17:13:01Z
dc.date.issued2015-01
dc.description.abstractAn autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.en_US
dc.description.sponsorshipNational Institute of Mental Health (P30 MH062261); National Cancer Institute (R01 CA170737); U.S. Department of Defense (W81XWH-13-1-0402)en_US
dc.identifier.citationBenton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi BK, Tautenhahn R, Gieschen A, Fields MW, Patti GJ, Siuzdak G, "Autonomous metabolomics for rapid metabolite identification in global profiling," Analytical Chemistry 87, no. 2 (January 20, 2015): 884–891. doi:10.1021/ac5025649.en_US
dc.identifier.issn0003-2700
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/11538
dc.titleAutonomous metabolomics for rapid metabolite identification in global profilingen_US
dc.typeArticleen_US
mus.citation.extentfirstpage884en_US
mus.citation.extentlastpage891en_US
mus.citation.issue2en_US
mus.citation.journaltitleAnalytical Chemistryen_US
mus.citation.volume87en_US
mus.contributor.orcidFields, Matthew W.|0000-0001-9053-1849en_US
mus.data.thumbpage7en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1021/ac5025649en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
15-007_Autonomous_metabolomics_for__A1b.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
Autonomous metabolomics for rapid metabolite identification in global profiling (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.