Ontogenetic and stratigraphic cranial variation in the ceratopsid dinosaur 'Triceratops' from the Hell Creek Formation, Montana

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

Hypotheses regarding the taxonomy and systematics of non-avian dinosaurs are based on analyses of morphology. As such, it is critical to assess the potential roles of intraspecific variation in systematic interpretations. Ontogenetic (developmental) change has been found to be a potential contributor to taxonomic confusion in the fossil record of dinosaurs. Similarly, variation between specimens found at different stratigraphic levels should be assessed in order to decipher variation within and between closely related taxa. The chasmosaurine ceratopsid Triceratops has had a complicated taxonomic history due to variation in cranial morphology between specimens. Recent work in the uppermost Cretaceous Hell Creek Formation (HCF) has produced a large (n>50) new sample of specimens. Using this data set its possible to reassess variation in Triceratops and further explore chasmosaurine paleobiology. Building on previous work on Triceratops ontogeny, examination of the parietal-squamosal frill finds that these bones underwent a dramatic transformation late in ontogeny. The short, solid frill of Triceratops expanded into a more elongate, thin, fenestrated condition, which had previously been found to characterize the coeval ceratopsid taxon Torosaurus latus. This suggests that these taxa are synonymous with Torosaurus representing the mature form of Triceratops rather than a distinct taxon. Further, Nedoceratops hatcheri, which is represented by a single specimen with a small fenestra in the parietal, is hypothesized to represent a transitional morphology between unfenestrated and fully fenestrated (Torosaurus) specimens. Detailed locality information for specimens collected over the course of the Hell Creek Project permits for the placement of specimens in stratigraphic context. The two currently recognized species, T. horridus and T. prorsus, are stratigraphically separated within the HCF and cladistic and stratocladistic analyses are consistent with the evolution of Triceratops incorporating anagenetic (transformational) change. Morphometric analyses of the extant archosaur Ceratogymna atrata (the Black-casqued hornbill) indicate that enlarged cranial structures function as objects of visual display. Morphometric studies of Triceratops further suggest that specimens found lower in the formation may have attained the Torosaurus frill morphology through ontogeny, whereas this basal condition became increasingly rare higher in the formation. Morphometric results are also consistent with early divergence between two distinct genera.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.