Associations of broad scale vegetation characteristics and abundances, nest densities, and nest survival of mixed-grass prairie songbirds in northern Montana

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Agriculture

Abstract

Grassland bird populations are declining faster than any other avian guild. In northern Montana, four species are experiencing severe population declines: Baird's sparrow (Centronyx bairdii), chestnut-collared longspur (Calcarius ornatus), McCown's longspur (Rynchophanes mccownii), and Sprague's pipit (Anthus spragueii). In 2017 and 2018, I evaluated abundance, nest density and nest survival of these species in relation to local vegetative conditions with the goal of identifying important breeding season vegetation conditions to inform management. I conducted fixed-radius point-counts at 100 sites to estimate local abundance, rope drag surveys to estimate nest density, nest monitoring to estimate nest survival, and vegetation surveys to estimate vegetation structure and composition across grassland habitats in Phillips County, MT. Point-counts and rope drag surveys were carried out with replicated visits to allow estimation of species-specific detection probabilities. Vegetation conditions were measured at the plot level (9-ha) to provide information at scales relevant for land managers. The abundance of Baird's sparrows was positively associated with residual grass cover and litter cover. Chestnut-collared longspur abundance was negatively associated with residual grass, exotic grass, and shrub cover and had a quadratic relationship with biomass. Plot-level abundance of McCown's longspurs was negatively associated with both shrub cover and biomass. Sprague's pipit abundance declined with exotic grass cover and exhibited a quadratic relationship with biomass. Limited sample size only allowed inference of nest density and nest survival for chestnut-collared longspurs. Nest density was negatively associated with plot scale exotic grass cover, biomass, and slope. I did not find support for any vegetation covariates on nest survival for chestnut-collared longspurs. These results provide some guidance for landscape managers interested in improving habitat for these species. The contrasting results among species, however, emphasize the need for heterogeneity in vegetation structure and composition. The disconnect between relevant covariates for nest density and nest survival suggest possible maladaptation for chestnut-collared longspurs. This result suggests that an index of productivity for this species that does not include both nest density and nest survival may produce erroneous results.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.