Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Theses and Dissertations at Montana State University (MSU)
    • Theses and Dissertations at Montana State University (MSU)
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Theses and Dissertations at Montana State University (MSU)
    • Theses and Dissertations at Montana State University (MSU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterizing astrophysical sources of gravitational waves

    Thumbnail
    View/Open
    KeyJ0510.pdf (2.003Mb)
    Date
    2010
    Author
    Key, Joey Shapiro.
    Metadata
    Show full item record
    Abstract
    The Laser Interferometer Space Antenna (LISA) and the Laser Interferometer Gravitational-wave Observatory (LIGO) are designed to detect gravitational waves from a wide range of astrophysical sources. The parameter estimation ability of these detectors can be determined by simulating the response to predicted gravitational wave sources with instrument noise and searching for the signals with sophisticated data analysis methods. A possible source of gravitational waves will be beams of radiation from discontinuities on cosmic length strings. Cosmic strings are predicted to form kinks and cusps that travel along the string at close to the speed of light. These disturbances are radiated away as highly beamed gravitational waves that produce a burst-like pulse as the cone of emission sweeps past an observer. The detection of a gravitational wave signal from a cosmic string cusp would illuminate the fields of string theory, cosmology, and relativity. Gravitational wave sources also include coalescing binary systems of compact objects. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Previous LISA data analysis studies have assumed that binary black hole systems have a circular orbit or an extreme mass ratio. It is ultimately necessary to understand the general case of spinning black hole binary systems in eccentric orbits and how LISA observations can be used to measure the eccentricity of the orbits as well as the masses, spins, and luminosity distances of the black holes. Once LISA is operational, the comparison of observations of eccentric and circular black hole binary sources will constrain theories on galaxy mergers in the early universe.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/1630
    Collections
    • Theses and Dissertations at Montana State University (MSU)

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback