Browsing by Author "Barry, Kerrie"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds(2016-11) Hwang, Chiachi; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Barry, Kerrie; Detter, John C.; Glavina del Rio, Tijana; Hammon, Nancy; Israni, Sanjay; Dalin, Eileen; Tice, Hope; Pitluck, S.; Chertkov, Olga; Brettin, Tom; Bruce, David; Han, C.; Schmutz, Jeremy; Larimer, F.; Land, M. L.; Hauser, Loren; Kyrpides, Nikos; Mikhailova, Natalia; Ye, Qi; Zhou, Jizhong; Richardson, Paul; Fields, Matthew W.Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.Item Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping(Wiley, 2021-06) Li, Huang; Hu, Xiao; Lovell, John T.; Grabowski, Paul P.; Mamidi, Sujan; Chen, Cindy; Amirebrahimi, Mojgan; Kahanda, Indika; Mumey, Brendan; Barry, Kerrie; Kudrna, David; Schmutz, Jeremy; Lachowiec, Jennifer; Lu, ChaofuCamelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions. We performed whole-genome resequencing to obtain single nucleotide polymorphism (SNP) markers and to analyze genomic diversity. We also conducted phenotypic field evaluations in two consecutive seasons for variations in key agronomic traits related to oilseed production such as seed size, oil content (OC), fatty acid composition, and flowering time. We determined the population structure of the camelina accessions using 161,301 SNPs. Further, we identified quantitative trait loci (QTL) and candidate genes controlling the above field-evaluated traits by genome-wide association studies (GWAS) complemented with linkage mapping using a recombinant inbred line (RIL) population. Characterization of the natural variation at the genome and phenotypic levels provides valuable resources to camelina genetic studies and crop improvement. The QTL and candidate genes should assist in breeding of advanced camelina varieties that can be integrated into the cropping systems for the production of high yield of oils of desired fatty acid composition.Item Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community(2010-02) Hemme, C. L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Sutapa; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, J. M.; Rubin, E. M.; Zhou, JizhongUnderstanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (B50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying c- and b-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.