Browsing by Author "Blake, Nancy K."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Characterization of resistance to Cephus cinctus Norton (Hymenoptera: Cephidae) in barley germplasm(2018-04) Varella, Andrea C.; Talbert, Luther E.; Achhami, Buddhi B.; Blake, Nancy K.; Hofland, Megan L.; Sherman, Jamie D.; Lamb, Peggy F.; Reddy, Gadi V. P.; Weaver, David K.Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.Item Characterization of resistance to the wheat stem sawfly in spring wheat landrace accessions from targeted geographic regions of the world(2017-07) Varella, Andrea C.; Weaver, David K.; Cook, Jason P.; Blake, Nancy K.; Hofland, Megan L.; Lamb, Peggy F.; Talbert, Luther E.Plant landraces have long been recognized as potential gene pools for biotic and abiotic stress-related genes. This research used spring wheat landrace accessions to identify new sources of resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton), an important insect pest of wheat in the northern Great Plains of North America. Screening efforts targeted 1409 accessions from six geographical areas of the world where other species of grain sawflies are endemic or where a high frequency of accessions possesses the resistance characteristic of solid stems. Resistance was observed in approximately 14% of accessions. Half of the lines displayed both antixenosis and antibiosis types of resistance. Among the resistant accessions, 41% had solid or semi-solid stems. Molecular genetic screening for haplotypes at the solid stem QTL, Qss.msub.3BL, showed that 15% of lines shared the haplotype derived from \'S-615\', the original donor of the solid stem trait to North American germplasm. Other haplotypes associated with solid stems were also observed. Haplotype diversity was greater in the center of origin of wheat. Evaluation of a representative set of resistant landrace accessions in replicated field trials at four locations over a three year period identified accessions with potential genes for reduced WSS infestation, increased WSS mortality, and increased indirect defense via parasitoids. Exploitation of distinct types of plant defense will expand the genetic diversity for WSS resistance currently present in elite breeding lines.Item Evaluation of wheat stem sawfly‐resistant solid stem Qss.msub‐3BL alleles in hard red winter wheat(Wiley, 2023-01) Wong, Mei Ling; Bruckner, Philip L.; Berg, Jim E.; Lamb, Peggy F.; Hofland, Megan L.; Caron, Christopher G.; Heo, Hwa‐Young; Blake, Nancy K.; Weaver, David K.; Cook, Jason P.Host plant resistance provided by solid stems has been the most effective means for mitigating wheat stem sawfly (WSS) (Cephus cinctus Norton) damage in spring and winter wheat (Triticum aestivum L.). The solid stem trait originates from the spring wheat cultivar “Rescue” and is associated with a quantitative trait locus allele Qss.msub-3BL.b that explains the majority of the variation for stem solidness. Recently, a new Qss.msub-3BL solid stem allele, designated Qss.msub-3BL.c, was identified in the spring wheat cultivar “Conan”. It produces a solid stem phenotype early in plant development but dissipates during plant growth. The Qss.msub-3BL.c allele provides effective WSS resistance in spring wheat but has not been tested in winter wheat. To examine if the Qss.msub-3BL.c allele provides adequate WSS resistance in winter wheat, near-isogenic lines (NILs) were developed using marker-assisted backcrossing. This enabled comparisons between the hollow stem Qss.msub-3BL.a, solid stem Qss.msub-3BL.b and solid stem Qss.msub-3BL.c alleles for stem solidness, WSS resistance, and agronomic traits in Montana growing environments. Compared to the hollow stem allele, the NILs with the Qss.msub-3BL.c allele increased stem solidness and reduced WSS stem cutting. However, the Qss.msub-3BL.c allele resulted in lower solid stem scores and greater WSS stem cutting compared to the Qss.msub-3BL.b allele. Overall, these findings indicate that the Qss.msub-3BL.c allele failed to provide sufficient WSS resistance in the winter wheat backgrounds tested in this study.Item Registration of ‘Dagmar’ hard red spring wheat(2020-02) Heo, Hwa-Young; Lanning, Susan P.; Lamb, Peggy F.; Nash, Deanna L.; Wichman, David M.; Eberly, Jed O.; Carr, P.; Kephart, Ken D.; Stougaard, Robert N.; Torrion, Jessica A.; Miller, J.; Chen, Chengci; Holen, Doug L.; Blake, Nancy K.; Talbert, Luther E.‘Dagmar’ hard red spring wheat (Triticum aestivum L.) (Reg. no. CV‐1158, PI 690450) was released by the Montana Agricultural Experiment Station because of its excellent yield potential in dryland areas of Montana, solid stems, and superior end‐use quality. Dagmar was a selection from the cross MT1133/MT1148 and was tested as experimental line MT1621. Dagmar has similar grain yield potential to ‘Vida’, the most widely grown cultivar in Montana. Stems of Dagmar are more solid than those of Vida, suggesting increased resistance to the wheat stem sawfly (Cephus cinctus Norton). Dagmar has higher grain protein and stronger gluten than Vida. Thus, Dagmar should be useful in Montana and adjoining states facing drought and wheat stem sawfly pressure.Item Registration of ‘Egan’ Wheat with Resistance to Orange Wheat Blossom Midge(2014-08) Blake, Nancy K.; Stougaard, Robert N.; Bohannon, B.; Weaver, David K.; Heo, Hwa-Young; Lamb, Peggy F.; Nash, Deanna L.; Wichman, David M.; Kephart, Ken D.; Miller, John H.; Eckhoff, Joyce L.; Grey, William E.; Reddy, Gadi V. P.; Lanning, Susan P.; Sherman, Jamie D.; Talbert, Luther E.Egan' hard red spring wheat (Triticum aestivum L.) (Reg. No. 1102, PI 671855) was developed by the Montana Agricultural Experiment Station and released in 2014. Egan is intended for production in areas of Montana infested with the orange wheat blossom midge (OWBM) (Sitodiplosis mosellana Géhin). Egan is resistant to OWBM due to antibiosis conferred by resistance gene Sm1. Egan also contains a chromosome segment originally introgressed into wheat from T. turgidum ssp. dicoccoides containing a gene for high protein (Gpc-B1) and a gene for stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici) resistance (Yr36). Egan has shown high yield potential and high grain protein in nurseries grown under OWBM pressure in the Flathead Valley of Montana. Egan is the first hard red spring wheat cultivar with resistance to OWBM developed for Montana.