Browsing by Author "Boshoff, Helena I."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Preparation and Evaluation of Potent PentafluorosulfanylSubstituted Anti-Tuberculosis Compounds(2017-07) Moraski, Garrett C.; Bristol, Ryan; Seeger, Natalie; Boshoff, Helena I.; Tsang, Patricia Siu-Yee; Miller, Marvin J.The global fight to stop tuberculosis (TB) remains a great challenge, particularly with the increase in drug-resistant strains and a lack of funding to support the development of new treatments. To bolster a precarious drug pipeline, we prepared a focused panel of eight pentafluorosulfanyl (SF5 ) compounds which were screened for their activity against Mycobacterium tuberculosis (Mtb) H37Rv in three different assay conditions and media. All eight compounds had sub-micromolar potency, and four displayed MICs <100 nm. Seven compounds were evaluated against non-replicating and mono-drug-resistant Mtb, and for their ability to inhibit Mtb within the macrophage. The greatest potency was observed against intracellular Mtb (MIC <10 nm for three compounds), which is often the most challenging to target. In general, the SF5 -bearing compounds were very similar to their CF3 counterparts, with the major differences observed being their in vitro ADME properties. Two SF5 -bearing compounds were found to have greater protein binding than their corresponding CF3 counterparts, but were also less metabolized in human microsomes, resulting in longer half-lives.Item Putting Tuberculosis (TB) To Rest: Transformation of the Sleep Aid, Ambien, and “Anagrams” Generated Potent Antituberculosis Agents(2014-12) Moraski, Garrett C.; Miller, Patricia; Bailey, Mai Ann; Ollinger, Juliane; Parish, Tanya; Boshoff, Helena I.; Cho, Sanghyun; Anderson, Jeffery; Mulugeta, Surafel; Franzblau, Scott G.; Miller, Marvin J.Zolpidem (Ambien, 1) is an imidazo[1,2-a]pyridine-3-acetamide and an approved drug for the treatment of insomnia. As medicinal chemists enamored by how structure imparts biological function, we found it to have strikingly similar structure to the antitubercular imidazo[1,2-a]pyridine-3-carboxyamides. Zolpidem was found to have antituberculosis activity (MIC of 10–50 μM) when screened against replicating Mycobacterium tuberculosis (Mtb) H37Rv. Manipulation of the Zolpidem structure, notably, to structural isomers (“anagrams”), attains remarkably improved potency (5, MIC of 0.004 μM) and impressive potency against clinically relevant drug-sensitive, multi- and extensively drug-resistant Mtb strains (MIC < 0.03 μM). Zolpidem anagrams and analogues were synthesized and evaluated for their antitubercular potency, toxicity, and spectrum of activity against nontubercular mycobacteria and Gram-positive and Gram-negative bacteria. These efforts toward the rational design of isomeric anagrams of a well-known sleep aid underscore the possibility that further optimization of the imidazo[1,2-a]pyridine core may well “put TB to rest”.