Browsing by Author "Bowersock, Lisa"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Infection Risk Reduction Program on Pathogens in High School and Collegiate Athletic Training Rooms(SAGE Publications, 2019-10) LaBelle, Mark W.; Knapik, Derrick M.; Arbogast, James W.; Zhou, Steve; Bowersock, Lisa; Parker, Albert; Voos, James E.Background: Athletic training rooms have a high prevalence of bacteria, including multidrug-resistant organisms, increasing the risk for both local and systematic infections in athletes. There are limited data outlining formal protocols or standardized programs to reduce bacterial and viral burden in training rooms as a means of decreasing infection rate at the collegiate and high school levels. Hypothesis: Adaptation of a hygiene protocol would lead to a reduction in bacterial and viral pathogen counts in athletic training rooms. Study Design: Cohort study. Level of Evidence: Level 3. Methods: Two high school and 2 collegiate athletic training rooms were studied over the course of the 2017-2018 academic year. A 3-phase protocol, including introduction of disinfectant products followed by student-athlete and athletic trainer education, was implemented at the 4 schools. Multiple surfaces in the athletic training rooms were swabbed at 4 time points throughout the investigation. Bacterial and viral burden from swabs were analyzed for overall bacterial aerobic plate count (APC), bacterial adenosine triphosphate activity, influenza viral load, and multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). Results: Overall bacterial load, as measured by APC, was reduced by 94.7% (95% CI, 72.6-99.0; P = 0.003) over the course of the investigation after protocol implementation. MRSA and VRE were found on 24% of surfaces prior to intervention and were reduced to 0% by the end of the study. Influenza was initially detected on 25% of surfaces, with no detection after intervention. No cases of athletic training room–acquired infections were reported during the study period. Conclusion: A uniform infection control protocol was effective in reducing bacterial and viral burden, including multi drug resistant organisms, when implemented in the athletic training rooms of 2 high schools and 2 colleges. Clinical Relevance: A standardized infection control protocol can be utilized in athletic training rooms to reduce bacterial and viral burden.Item Post-Fire Vegetation Response in a Repeatedly Burned Low-Elevation Sagebrush Steppe Protected Area Provides Insights About Resilience and Invasion Resistance(Frontiers Media SA, 2020-11) Rodhouse, Thomas J.; Irvine, Kathryn M.; Bowersock, LisaSagebrush steppe ecosystems are threatened by human land-use legacies, biological invasions, and altered fire and climate dynamics. Steppe protected areas are therefore of heightened conservation importance but are few and vulnerable to the same impacts broadly affecting sagebrush steppe. To address this problem, sagebrush steppe conservation science is increasingly emphasizing a focus on resilience to fire and resistance to non-native annual grass invasion as a decision framework. It is well-established that the positive feedback loop between fire and annual grass invasion is the driving process of most contemporary steppe degradation. We use a newly developed ordinal zero-augmented beta regression model fit to large-sample vegetation monitoring data from John Day Fossil Beds National Monument, USA, spanning 7 years to evaluate fire responses of two native perennial foundation bunchgrasses and two non-native invasive annual grasses in a repeatedly burned, historically grazed, and inherently low-resilient protected area. We structured our model hierarchically to support inferences about variation among ecological site types and over time after also accounting for growing-season water deficit, fine-scale topographic variation, and burn severity. We use a state-and-transition conceptual diagram and abundances of plants listed in ecological site reference conditions to formalize our hypothesis of fire-accelerated transition to ecologically novel annual grassland. Notably, big sagebrush (Artemisia tridentata) and other woody species were entirely removed by fire. The two perennial grasses, bluebunch wheatgrass (Pseudoroegneria spicata) and Thurber's needlegrass (Achnatherum thurberianum) exhibited fire resiliency, with no apparent trend after fire. The two annual grasses, cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), increased in response to burn severity, most notably medusahead. Surprisingly, we found no variation in grass cover among ecological sites, suggesting fire-driven homogenization as shrubs were removed and annual grasses became dominant. We found contrasting responses among all four grass species along gradients of topography and water deficit, informative to protected-area conservation strategies. The fine-grained influence of topography was particularly important to variation in cover among species and provides a foothold for conservation in low-resilient, aridic steppe. Broadly, our study demonstrates how to operationalize resilience and resistance concepts for protected areas by integrating empirical data with conceptual and statistical models.Item Resilience to fire and resistance to annual grass invasion in sagebrush ecosystems of US National Parks(Elsevier BV, 2021-08) Rodhouse, Thomas J.; Lonneker, Jeffrey; Bowersock, Lisa; Popp, Diana; Thompson, Jamela C.; Dicus, Gordon H.; Irvine, Kathryn M.Western North American sagebrush shrublands and steppe face accelerating risks from fire-driven feedback loops that transition these ecosystems into self-reinforcing states dominated by invasive annual grasses. In response, sagebrush conservation decision-making is increasingly done through the lens of resilience to fire and annual grass invasion resistance. Operationalizing resilience and resistance concepts requires place-based understanding of resilience and resistance variation among landscapes over time. Place-based insights allow for landscape prioritization in targeted areas of significance such as protected-area sagebrush ecosystems that exhibit inherently low resilience and are therefore at high risk of loss. We used a multi-scale approach to evaluate sagebrush resiliency and strategic planning across 1) the US National Park system, 2) a regional suite of five parks, and 3) for two specific park case studies. First, we summarized broad patterns of relative resilience to fire and resistance to annual grass invasion across all parks with sagebrush ecosystems. We found that national parks represented ~11% of US protected-area sagebrush ecosystems and reflected a similar low-resilience bias that occurs across the biome, broadly. Climate change is likely to shift both low- and high-resilience park sagebrush ecosystems towards moderate resiliency, creating new opportunities and constraints for park conservation. Approximately seventy park units include at least some sagebrush shrublands or steppe, but we identified 40 parks with substantial amounts (>20% of park area) that can be included in an agency-wide conservation strategy. Second, we examined detailed patterns of resilience and resistance, fire history and fire risk, cheatgrass (Bromus tectorum) invasion, and sagebrush shrub (Artemisia spp.) persistence in five national park units in Columbia Basin and Snake River Plain sagebrush steppe, contextualized by the broader summary. In these five parks, fire frequency and size increased in recent decades. Cheatgrass invasion and sagebrush persistence correlated strongly with resilience, burn frequency (0–3 fires since ~1940), and burn probability, but with important variation, in part mediated by local-scale topography. Third, we used these insights to assemble strategic sagebrush ecosystem fire protection mapping scenarios in two additional parks – Lava Beds National Monument and Great Basin National Park. Readily available and periodically updated geospatial data including soil surveys, fire histories, vegetation inventories, and long-term monitoring support resiliency-based adaptive management through tactical planning of pre-fire protection, post-fire restoration, and triage. Our assessment establishes the precarious importance of the US national park system to sagebrush ecosystem conservation and an operational strategy for place-based and science-supported conservation.